BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23185398)

  • 1. Genetic connectivity among and self-replenishment within island populations of a restricted range subtropical reef fish.
    van der Meer MH; Hobbs JP; Jones GP; van Herwerden L
    PLoS One; 2012; 7(11):e49660. PubMed ID: 23185398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limited contemporary gene flow and high self-replenishment drives peripheral isolation in an endemic coral reef fish.
    van der Meer MH; Horne JB; Gardner MG; Hobbs JP; Pratchett M; van Herwerden L
    Ecol Evol; 2013 Jun; 3(6):1653-66. PubMed ID: 23789075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High gene flow in reef fishes and its implications for ad-hoc no-take marine reserves.
    Matias AM; Anticamara JA; Quilang JP
    Mitochondrial DNA; 2013 Oct; 24(5):584-95. PubMed ID: 23530464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Historic hybridization and introgression between two iconic Australian anemonefish and contemporary patterns of population connectivity.
    van der Meer MH; Jones GP; Hobbs JP; van Herwerden L
    Ecol Evol; 2012 Jul; 2(7):1592-604. PubMed ID: 22957165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The genetic structure of Nautilus pompilius populations surrounding Australia and the Philippines.
    Williams RC; Jackson BC; Duvaux L; Dawson DA; Burke T; Sinclair W
    Mol Ecol; 2015 Jul; 24(13):3316-28. PubMed ID: 26033519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of marine reserves in the replenishment of a locally impacted population of anemonefish on the Great Barrier Reef.
    Bonin MC; Harrison HB; Williamson DH; Frisch AJ; Saenz-Agudelo P; Berumen ML; Jones GP
    Mol Ecol; 2016 Jan; 25(2):487-99. PubMed ID: 26589106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.
    Lukoschek V; Riginos C; van Oppen MJ
    Mol Ecol; 2016 Jul; 25(13):3065-80. PubMed ID: 27085309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small Marine Protected Areas in Fiji Provide Refuge for Reef Fish Assemblages, Feeding Groups, and Corals.
    Bonaldo RM; Pires MM; Guimarães PR; Hoey AS; Hay ME
    PLoS One; 2017; 12(1):e0170638. PubMed ID: 28122006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic population structure of the endemic fourline wrasse (Larabicus quadrilineatus) suggests limited larval dispersal distances in the Red Sea.
    Froukh T; Kochzius M
    Mol Ecol; 2007 Apr; 16(7):1359-67. PubMed ID: 17391261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design.
    Green AL; Maypa AP; Almany GR; Rhodes KL; Weeks R; Abesamis RA; Gleason MG; Mumby PJ; White AT
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1215-47. PubMed ID: 25423947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Larval dispersal connects fish populations in a network of marine protected areas.
    Planes S; Jones GP; Thorrold SR
    Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5693-7. PubMed ID: 19307588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park.
    Williamson DH; Harrison HB; Almany GR; Berumen ML; Bode M; Bonin MC; Choukroun S; Doherty PJ; Frisch AJ; Saenz-Agudelo P; Jones GP
    Mol Ecol; 2016 Dec; 25(24):6039-6054. PubMed ID: 27862567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protection of genetic diversity and maintenance of connectivity among reef corals within marine protected areas.
    Miller KJ; Ayre DJ
    Conserv Biol; 2008 Oct; 22(5):1245-54. PubMed ID: 18637917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic.
    Endo CAK; Gherardi DFM; Pezzi LP; Lima LN
    Sci Rep; 2019 Jun; 9(1):8634. PubMed ID: 31201350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of host-associated genetic differentiation among phenotypically divergent populations of a coral-eating gastropod across the Caribbean.
    Johnston L; Miller MW; Baums IB
    PLoS One; 2012; 7(11):e47630. PubMed ID: 23133600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interspecific, spatial and temporal variability of self-recruitment in anemonefishes.
    Madduppa HH; Timm J; Kochzius M
    PLoS One; 2014; 9(2):e90648. PubMed ID: 24587406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concordance between genetic and species diversity in coral reef fishes across the Pacific Ocean biodiversity gradient.
    Messmer V; Jones GP; Munday PL; Planes S
    Evolution; 2012 Dec; 66(12):3902-17. PubMed ID: 23206145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective Dispersal of Caribbean Reef Fish is Smaller than Current Spacing Among Marine Protected Areas.
    Beltrán DM; Schizas NV; Appeldoorn RS; Prada C
    Sci Rep; 2017 Jul; 7(1):4689. PubMed ID: 28680075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Community change within a Caribbean coral reef Marine Protected Area following two decades of local management.
    Noble MM; van Laake G; Berumen ML; Fulton CJ
    PLoS One; 2013; 8(1):e54069. PubMed ID: 23342078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Marine reserves stabilize fish populations and fisheries yields in disturbed coral reef systems.
    Hopf JK; Jones GP; Williamson DH; Connolly SR
    Ecol Appl; 2019 Jul; 29(5):e01905. PubMed ID: 30985954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.