These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23185650)

  • 1. Conformational Sampling of Maltose-transporter Components in Cartesian Collective Variables is Governed by the Low-frequency Normal Modes.
    Vashisth H; Brooks CL
    J Phys Chem Lett; 2012 Nov; 3(22):3379-3384. PubMed ID: 23185650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-Accelerated Sampling and Amplified Collective Motion with Adiabatic Reweighting to Obtain Canonical Distributions and Ensemble Averages.
    Hu Y; Hong W; Shi Y; Liu H
    J Chem Theory Comput; 2012 Oct; 8(10):3777-92. PubMed ID: 26593019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics.
    Abrams CF; Vanden-Eijnden E
    Proc Natl Acad Sci U S A; 2010 Mar; 107(11):4961-6. PubMed ID: 20194785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of functional motions in Brownian molecular machines with an efficient block normal mode approach: myosin-II and Ca2+ -ATPase.
    Li G; Cui Q
    Biophys J; 2004 Feb; 86(2):743-63. PubMed ID: 14747312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using enhanced sampling and structural restraints to refine atomic structures into low-resolution electron microscopy maps.
    Vashisth H; Skiniotis G; Brooks CL
    Structure; 2012 Sep; 20(9):1453-62. PubMed ID: 22958641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of conformational motions and related key residue interactions responsible for a specific function of proteins with elastic network model.
    Su JG; Han XM; Zhang X; Hou YX; Zhu JZ; Wu YD
    J Biomol Struct Dyn; 2016; 34(3):560-71. PubMed ID: 25909329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How well can we understand large-scale protein motions using normal modes of elastic network models?
    Yang L; Song G; Jernigan RL
    Biophys J; 2007 Aug; 93(3):920-9. PubMed ID: 17483178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jumping between protein conformers using normal modes.
    Mahajan S; Sanejouand YH
    J Comput Chem; 2017 Jul; 38(18):1622-1630. PubMed ID: 28470912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the Sampling Efficiency of Protein Conformational Change by Combining a Modified Replica Exchange Molecular Dynamics and Normal Mode Analysis.
    Peng C; Wang J; Shi Y; Xu Z; Zhu W
    J Chem Theory Comput; 2021 Jan; 17(1):13-28. PubMed ID: 33351613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple, yet powerful methodologies for conformational sampling of proteins.
    Harada R; Takano Y; Baba T; Shigeta Y
    Phys Chem Chem Phys; 2015 Mar; 17(9):6155-73. PubMed ID: 25659594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature Accelerated Molecular Dynamics with Soft-Ratcheting Criterion Orients Enhanced Sampling by Low-Resolution Information.
    Cortes-Ciriano I; Bouvier G; Nilges M; Maragliano L; Malliavin TE
    J Chem Theory Comput; 2015 Jul; 11(7):3446-54. PubMed ID: 26575778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand-induced conformational change of a protein reproduced by a linear combination of displacement vectors obtained from normal mode analysis.
    Wako H; Endo S
    Biophys Chem; 2011 Dec; 159(2-3):257-66. PubMed ID: 21807453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient and direct generation of multidimensional free energy surfaces via adiabatic dynamics without coordinate transformations.
    Abrams JB; Tuckerman ME
    J Phys Chem B; 2008 Dec; 112(49):15742-57. PubMed ID: 19367870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allosteric transitions of the maltose transporter studied by an elastic network model.
    Li CH; Yang YX; Su JG; Liu B; Tan JJ; Zhang XY; Wang CX
    Biopolymers; 2014 Jul; 101(7):758-68. PubMed ID: 24865820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulating Large-Scale Conformational Changes of Proteins by Accelerating Collective Motions Obtained from Principal Component Analysis.
    Peng J; Zhang Z
    J Chem Theory Comput; 2014 Aug; 10(8):3449-58. PubMed ID: 26588312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Scale Biomolecular Conformational Transitions Explored by a Combined Elastic Network Model and Enhanced Sampling Molecular Dynamics.
    Wang A; Zhang D; Li Y; Zhang Z; Li G
    J Phys Chem Lett; 2020 Jan; 11(1):325-332. PubMed ID: 31867970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Why are large conformational changes well described by harmonic normal modes?
    Dehouck Y; Bastolla U
    Biophys J; 2021 Dec; 120(23):5343-5354. PubMed ID: 34710378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A network of dynamically conserved residues deciphers the motions of maltose transporter.
    Lukman S; Grant GH
    Proteins; 2009 Aug; 76(3):588-97. PubMed ID: 19274733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized torsion-angle normal modes reproduce conformational changes more accurately than cartesian modes.
    Bray JK; Weiss DR; Levitt M
    Biophys J; 2011 Dec; 101(12):2966-9. PubMed ID: 22208195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An NMA-guided path planning approach for computing large-amplitude conformational changes in proteins.
    Kirillova S; Cortés J; Stefaniu A; Siméon T
    Proteins; 2008 Jan; 70(1):131-43. PubMed ID: 17640073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.