These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 23185690)

  • 1. Witnessing Quantum Coherence: from solid-state to biological systems.
    Li CM; Lambert N; Chen YN; Chen GY; Nori F
    Sci Rep; 2012; 2():885. PubMed ID: 23185690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the quantum witness, the entropic Leggett-Garg inequality and the NCGD.
    Tan X; Zhang Y; Qiu T
    Sci Rep; 2024 May; 14(1):10139. PubMed ID: 38698176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements.
    Pelzer KM; Griffin GB; Gray SK; Engel GS
    J Chem Phys; 2012 Apr; 136(16):164508. PubMed ID: 22559497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating Leggett-Garg inequality for a two level system under decoherence in a non-Markovian dephasing environment.
    Chen PW; Ali MM
    Sci Rep; 2014 Aug; 4():6165. PubMed ID: 25145508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Violation of the Leggett-Garg inequality with weak measurements of photons.
    Goggin ME; Almeida MP; Barbieri M; Lanyon BP; O'Brien JL; White AG; Pryde GJ
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1256-61. PubMed ID: 21220296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental detection of quantum coherent evolution through the violation of Leggett-Garg-type inequalities.
    Zhou ZQ; Huelga SF; Li CF; Guo GC
    Phys Rev Lett; 2015 Sep; 115(11):113002. PubMed ID: 26406826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantumness in light harvesting is determined by vibrational dynamics.
    Reppert M; Brumer P
    J Chem Phys; 2018 Dec; 149(23):234102. PubMed ID: 30579316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum violation of LGI under an energy constraint for different scenarios systems.
    Zhang Y; Tan X; Qiu T
    Sci Rep; 2023 Aug; 13(1):12530. PubMed ID: 37532739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes.
    Ishizaki A; Fleming GR
    J Phys Chem B; 2011 May; 115(19):6227-33. PubMed ID: 21488648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the quantumness of the annealing dynamics via Leggett Garg's inequalities: a weak measurement approach.
    Vitale V; De Filippis G; de Candia A; Tagliacozzo A; Cataudella V; Lucignano P
    Sci Rep; 2019 Sep; 9(1):13624. PubMed ID: 31541151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis.
    Turner DB; Dinshaw R; Lee KK; Belsley MS; Wilk KE; Curmi PM; Scholes GD
    Phys Chem Chem Phys; 2012 Apr; 14(14):4857-74. PubMed ID: 22374579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer.
    Ishizaki A; Calhoun TR; Schlau-Cohen GS; Fleming GR
    Phys Chem Chem Phys; 2010 Jul; 12(27):7319-37. PubMed ID: 20544102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Different Quantum Coherence on the Pump-Probe Polarization Anisotropy of Photosynthetic Light-Harvesting Complexes: A Computational Study.
    Bai S; Song K; Shi Q
    J Phys Chem Lett; 2015 May; 6(10):1954-60. PubMed ID: 26263276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna.
    Dawlaty JM; Ishizaki A; De AK; Fleming GR
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3672-91. PubMed ID: 22753820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics and quantumness of excitation energy transfer through a complex quantum network.
    Qin M; Shen HZ; Zhao XL; Yi XX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042140. PubMed ID: 25375471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
    Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR
    Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum transport efficiency and Fourier's law.
    Manzano D; Tiersch M; Asadian A; Briegel HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061118. PubMed ID: 23367904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coherence time of sunlight in the context of natural and artificial light-harvesting.
    Ricketti BV; Gauger EM; Fedrizzi A
    Sci Rep; 2022 Mar; 12(1):5438. PubMed ID: 35361842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences.
    Chin AW; Huelga SF; Plenio MB
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3638-57. PubMed ID: 22753818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient energy transfer in light-harvesting systems: quantum-classical comparison, flux network, and robustness analysis.
    Wu J; Liu F; Ma J; Silbey RJ; Cao J
    J Chem Phys; 2012 Nov; 137(17):174111. PubMed ID: 23145721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.