These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23185877)

  • 41. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain.
    Jiménez L; Rühland KM; Jeziorski A; Smol JP; Pérez-Martínez C
    Glob Chang Biol; 2018 Jan; 24(1):e139-e158. PubMed ID: 28833814
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diatom community response to climate variability over the past 37,000 years in the sub-tropics of the Southern Hemisphere.
    Hembrow SC; Taffs KH; Atahan P; Parr J; Zawadzki A; Heijnis H
    Sci Total Environ; 2014 Jan; 468-469():774-84. PubMed ID: 24076501
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.
    Korosi JB; Griffiths K; Smol JP; Blais JM
    Environ Pollut; 2018 Oct; 241():459-467. PubMed ID: 29870948
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes.
    Pienitz R; Vincent WF
    Nature; 2000 Mar; 404(6777):484-7. PubMed ID: 10761913
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Climate change induced eutrophication of cold-water lake in an ecologically fragile nature reserve.
    Lu X; Lu Y; Chen D; Su C; Song S; Wang T; Tian H; Liang R; Zhang M; Khan K
    J Environ Sci (China); 2019 Jan; 75():359-369. PubMed ID: 30473301
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trends of lake temperature, mixing depth and ice cover thickness of European lakes during the last four decades.
    Stefanidis K; Varlas G; Papaioannou G; Papadopoulos A; Dimitriou E
    Sci Total Environ; 2022 Jul; 830():154709. PubMed ID: 35331765
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir.
    Bucak T; Trolle D; Tavşanoğlu ÜN; Çakıroğlu Aİ; Özen A; Jeppesen E; Beklioğlu M
    Sci Total Environ; 2018 Apr; 621():802-816. PubMed ID: 29202291
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere.
    Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H
    Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Contrasting the ecological effects of decreasing ice cover versus accelerated glacial melt on the High Arctic's largest lake.
    Michelutti N; Douglas MSV; Antoniades D; Lehnherr I; St Louis VL; St Pierre K; Muir DCG; Brunskill G; Smol JP
    Proc Biol Sci; 2020 Jun; 287(1929):20201185. PubMed ID: 32576110
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Storm impacts on alpine lakes: Antecedent weather conditions matter more than the event intensity.
    Perga ME; Bruel R; Rodriguez L; Guénand Y; Bouffard D
    Glob Chang Biol; 2018 Oct; 24(10):5004-5016. PubMed ID: 29974996
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using temporal coherence to determine the response to climate change in Boreal Shield lakes.
    Arnott SE; Keller B; Dillon PJ; Yan N; Paterson M; Findlay D
    Environ Monit Assess; 2003; 88(1-3):365-88. PubMed ID: 14570423
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Temporal trends, lake-to-lake variation, and climate effects on Arctic char (Salvelinus alpinus) mercury concentrations from six High Arctic lakes in Nunavut, Canada.
    Hudelson KE; Muir DCG; Drevnick PE; Köck G; Iqaluk D; Wang X; Kirk JL; Barst BD; Grgicak-Mannion A; Shearon R; Fisk AT
    Sci Total Environ; 2019 Aug; 678():801-812. PubMed ID: 31085496
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessing the impact of long-term changes in climate and atmospheric deposition on a shallow alpine lake from southeast Tibet.
    Kang W; Chen G; Wang J; Huang L; Wang L; Li R; Hu K; Liu Y; Tao J; Blais JM; Smol JP
    Sci Total Environ; 2019 Feb; 650(Pt 1):713-724. PubMed ID: 30212702
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Within-lake habitat heterogeneity mediates community response to warming trends.
    Hovel RA; Thorson JT; Carter JL; Quinn TP
    Ecology; 2017 Sep; 98(9):2333-2342. PubMed ID: 28664599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Paleo-diatom records reveal ecological change not detected using traditional measures of lake eutrophication.
    Gregersen R; Howarth JD; Atalah J; Pearman JK; Waters S; Li X; Vandergoes MJ; Wood SA
    Sci Total Environ; 2023 Apr; 867():161414. PubMed ID: 36621498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling nearshore-offshore exchange in Lake Superior.
    McKinney P; Tokos KS; Matsumoto K
    PLoS One; 2018; 13(2):e0193183. PubMed ID: 29447286
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Climate change expands the spatial extent and duration of preferred thermal habitat for lake Superior fishes.
    Cline TJ; Bennington V; Kitchell JF
    PLoS One; 2013; 8(4):e62279. PubMed ID: 23638023
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maximum lake surface water temperatures changing characteristics under climate change.
    Yang J; Yang K; Zhang Y; Luo Y; Shang C
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2547-2554. PubMed ID: 34370202
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Melting Alpine glaciers enrich high-elevation lakes with reactive nitrogen.
    Saros JE; Rose KC; Clow DW; Stephens VC; Nurse AB; Arnett HA; Stone JR; Williamson CE; Wolfe AP
    Environ Sci Technol; 2010 Jul; 44(13):4891-6. PubMed ID: 20527763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes.
    Pilla RM; Williamson CE; Adamovich BV; Adrian R; Anneville O; Chandra S; Colom-Montero W; Devlin SP; Dix MA; Dokulil MT; Gaiser EE; Girdner SF; Hambright KD; Hamilton DP; Havens K; Hessen DO; Higgins SN; Huttula TH; Huuskonen H; Isles PDF; Joehnk KD; Jones ID; Keller WB; Knoll LB; Korhonen J; Kraemer BM; Leavitt PR; Lepori F; Luger MS; Maberly SC; Melack JM; Melles SJ; Müller-Navarra DC; Pierson DC; Pislegina HV; Plisnier PD; Richardson DC; Rimmer A; Rogora M; Rusak JA; Sadro S; Salmaso N; Saros JE; Saulnier-Talbot É; Schindler DE; Schmid M; Shimaraeva SV; Silow EA; Sitoki LM; Sommaruga R; Straile D; Strock KE; Thiery W; Timofeyev MA; Verburg P; Vinebrooke RD; Weyhenmeyer GA; Zadereev E
    Sci Rep; 2020 Nov; 10(1):20514. PubMed ID: 33239702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.