These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23186041)

  • 1. Electrochemical studies of capping agent adsorption provide insight into the formation of anisotropic gold nanocrystals.
    Danger BR; Fan D; Vivek JP; Burgess IJ
    ACS Nano; 2012 Dec; 6(12):11018-26. PubMed ID: 23186041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface enhanced infrared absorption spectroscopy studies of DMAP adsorption on gold surfaces.
    Rosendahl SM; Danger BR; Vivek JP; Burgess IJ
    Langmuir; 2009 Feb; 25(4):2241-7. PubMed ID: 19199729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical evaluation of 4-(dimethylamino)pyridine adsorption on polycrystalline gold.
    Barlow BC; Burgess IJ
    Langmuir; 2007 Jan; 23(3):1555-63. PubMed ID: 17241087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: formation of dioleamide by gold nanocatalysis.
    Mohamed MB; AbouZeid KM; Abdelsayed V; Aljarash AA; El-Shall MS
    ACS Nano; 2010 May; 4(5):2766-72. PubMed ID: 20392051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of 4-(dimethylamino)pyridine as a capping agent for gold nanoparticles.
    Gandubert VJ; Lennox RB
    Langmuir; 2005 Jul; 21(14):6532-9. PubMed ID: 15982063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals.
    Niu W; Zheng S; Wang D; Liu X; Li H; Han S; Chen J; Tang Z; Xu G
    J Am Chem Soc; 2009 Jan; 131(2):697-703. PubMed ID: 19102696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-controlled electrodeposition of gold nanostructures.
    Tian Y; Liu H; Zhao G; Tatsuma T
    J Phys Chem B; 2006 Nov; 110(46):23478-81. PubMed ID: 17107201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Investigations of 4-Methoxypyridine Adsorption on Au(111) Predict Its Suitability for Stabilizing Au Nanoparticles.
    Unni B; Simon S; Burgess IJ
    Langmuir; 2015 Sep; 31(36):9882-8. PubMed ID: 26302417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and mechanistic study of palladium nanobars and nanorods.
    Xiong Y; Cai H; Wiley BJ; Wang J; Kim MJ; Xia Y
    J Am Chem Soc; 2007 Mar; 129(12):3665-75. PubMed ID: 17335211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quaternary ammonium bromide surfactant adsorption on low-index surfaces of gold. 2. Au(100) and the role of crystallographic-dependent adsorption in the formation of anisotropic nanoparticles.
    Vivek JP; Burgess IJ
    Langmuir; 2012 Mar; 28(11):5040-7. PubMed ID: 22375834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods.
    Song JH; Kim F; Kim D; Yang P
    Chemistry; 2005 Jan; 11(3):910-6. PubMed ID: 15593133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Block copolymer-mediated synthesis of size-tunable gold nanospheres and nanoplates.
    Goy-López S; Castro E; Taboada P; Mosquera V
    Langmuir; 2008 Nov; 24(22):13186-96. PubMed ID: 18925755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of human insulin on single-crystal gold surfaces investigated by in situ scanning tunnelling microscopy and electrochemistry.
    Welinder AC; Zhang J; Steensgaard DB; Ulstrup J
    Phys Chem Chem Phys; 2010 Sep; 12(34):9999-10011. PubMed ID: 20697659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetry breaking and silver in gold nanorod growth.
    Walsh MJ; Barrow SJ; Tong W; Funston AM; Etheridge J
    ACS Nano; 2015 Jan; 9(1):715-24. PubMed ID: 25572634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Mechanism for Symmetry Breaking and Shape Control in Single-Crystal Gold Nanorods.
    Walsh MJ; Tong W; Katz-Boon H; Mulvaney P; Etheridge J; Funston AM
    Acc Chem Res; 2017 Dec; 50(12):2925-2935. PubMed ID: 29144733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local deposition of anisotropic nanoparticles using scanning electrochemical microscopy (SECM).
    Fedorov RG; Mandler D
    Phys Chem Chem Phys; 2013 Feb; 15(8):2725-32. PubMed ID: 23338843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural evolution of gold nanorods during controlled secondary growth.
    Keul HA; Möller M; Bockstaller MR
    Langmuir; 2007 Sep; 23(20):10307-15. PubMed ID: 17713936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential-controlled electrochemical seed-mediated growth of gold nanorods directly on electrode surfaces.
    Abdelmoti LG; Zamborini FP
    Langmuir; 2010 Aug; 26(16):13511-21. PubMed ID: 20695598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of polyelectrolyte-coated gold nanoparticles.
    Dorris A; Rucareanu S; Reven L; Barrett CJ; Lennox RB
    Langmuir; 2008 Mar; 24(6):2532-8. PubMed ID: 18229959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matter of age: growing anisotropic gold nanocrystals in organic media.
    Gaikwad AV; Verschuren P; Kinge S; Rothenberg G; Eiser E
    Phys Chem Chem Phys; 2008 Feb; 10(7):951-6. PubMed ID: 18259633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.