These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23186105)

  • 1. Subversion of host cellular functions by the apicomplexan parasites.
    Kemp LE; Yamamoto M; Soldati-Favre D
    FEMS Microbiol Rev; 2013 Jul; 37(4):607-31. PubMed ID: 23186105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryogenic electron tomography reveals novel structures in the apical complex of
    Sun SY; Segev-Zarko L-a; Pintilie GD; Kim CY; Staggers SR; Schmid MF; Egan ES; Chiu W; Boothroyd JC
    mBio; 2024 Apr; 15(4):e0286423. PubMed ID: 38456679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxoplasma gondii rhoptry discharge factor 3 is essential for invasion and microtubule-associated vesicle biogenesis.
    Ben Chaabene R; Martinez M; Bonavoglia A; Maco B; Chang YW; Lentini G; Soldati-Favre D
    PLoS Biol; 2024 Aug; 22(8):e3002745. PubMed ID: 39137211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhoptry secretion system structure and priming in Plasmodium falciparum revealed using in situ cryo-electron tomography.
    Martinez M; Chen WD; Cova MM; Molnár P; Mageswaran SK; Guérin A; John ARO; Lebrun M; Chang YW
    Nat Microbiol; 2022 Aug; 7(8):1230-1238. PubMed ID: 35817892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An apical membrane complex for triggering rhoptry exocytosis and invasion in Toxoplasma.
    Sparvoli D; Delabre J; Penarete-Vargas DM; Kumar Mageswaran S; Tsypin LM; Heckendorn J; Theveny L; Maynadier M; Mendonça Cova M; Berry-Sterkers L; Guérin A; Dubremetz JF; Urbach S; Striepen B; Turkewitz AP; Chang YW; Lebrun M
    EMBO J; 2022 Nov; 41(22):e111158. PubMed ID: 36245278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural definition of babesial RAP-1 proteins identifies a novel protein superfamily across Apicomplexa.
    Hötzel I; Suarez CE
    Sci Rep; 2023 Dec; 13(1):22330. PubMed ID: 38102310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Glycosylphosphatidylinositol-Anchored Carbonic Anhydrase-Related Protein of
    Chasen NM; Asady B; Lemgruber L; Vommaro RC; Kissinger JC; Coppens I; Moreno SNJ
    mSphere; 2017; 2(3):. PubMed ID: 28529974
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Anaguano D; Adewale-Fasoro O; Vick GS; Yanik S; Blauwkamp J; Fierro MA; Absalon S; Srinivasan P; Muralidharan V
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptic organelle homology in apicomplexan parasites: insights from evolutionary cell biology.
    Klinger CM; Nisbet RE; Ouologuem DT; Roos DS; Dacks JB
    Curr Opin Microbiol; 2013 Aug; 16(4):424-31. PubMed ID: 23932202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteases as regulators of pathogenesis: examples from the Apicomplexa.
    Li H; Child MA; Bogyo M
    Biochim Biophys Acta; 2012 Jan; 1824(1):177-85. PubMed ID: 21683169
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Woods K; Perry C; Brühlmann F; Olias P
    Front Cell Dev Biol; 2021; 9():662805. PubMed ID: 33959614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Overview of Peripheral Blood Mononuclear Cells as a Model for Immunological Research of
    Acosta Davila JA; Hernandez De Los Rios A
    Front Cell Infect Microbiol; 2019; 9():24. PubMed ID: 30800644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How colonization bottlenecks, tissue niches, and transmission strategies shape protozoan infections.
    May DA; Taha F; Child MA; Ewald SE
    Trends Parasitol; 2023 Dec; 39(12):1074-1086. PubMed ID: 37839913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fostering innovation to solve the biomechanics of microbe-host interactions: Focus on the adhesive forces underlying Apicomplexa parasite biology.
    Vigetti L; Tardieux I
    Biol Cell; 2023 Oct; 115(10):e202300016. PubMed ID: 37227253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained rhoptry docking and discharge requires Toxoplasma gondii intraconoidal microtubule-associated proteins.
    Dos Santos Pacheco N; Tell I Puig A; Guérin A; Martinez M; Maco B; Tosetti N; Delgado-Betancourt E; Lunghi M; Striepen B; Chang YW; Soldati-Favre D
    Nat Commun; 2024 Jan; 15(1):379. PubMed ID: 38191574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino Acid Metabolism in Apicomplexan Parasites.
    Krishnan A; Soldati-Favre D
    Metabolites; 2021 Jan; 11(2):. PubMed ID: 33498308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nephromyces, a beneficial apicomplexan symbiont in marine animals.
    Saffo MB; McCoy AM; Rieken C; Slamovits CH
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16190-5. PubMed ID: 20736348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets.
    de Vries LE; Lunghi M; Krishnan A; Kooij TWA; Soldati-Favre D
    PLoS Pathog; 2021 Dec; 17(12):e1010124. PubMed ID: 34969059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dangerous Duplicity: The Dual Functions of Casein Kinase 1 in Parasite Biology and Host Subversion.
    Rachidi N; Knippschild U; Späth GF
    Front Cell Infect Microbiol; 2021; 11():655700. PubMed ID: 33869086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of teleost rodlet cells with apicomplexan cells.
    DePasquale JA
    Acta Histochem; 2024 May; 126(4):152167. PubMed ID: 38733697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.