BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 23186163)

  • 1. Toward a comprehensive characterization of a human cancer cell phosphoproteome.
    Zhou H; Di Palma S; Preisinger C; Peng M; Polat AN; Heck AJ; Mohammed S
    J Proteome Res; 2013 Jan; 12(1):260-71. PubMed ID: 23186163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides.
    Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ
    Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics.
    Batth TS; Francavilla C; Olsen JV
    J Proteome Res; 2014 Dec; 13(12):6176-86. PubMed ID: 25338131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET).
    Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R
    J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive phosphoproteomics by tailoring solid-phase extraction to electrostatic repulsion-hydrophilic interaction chromatography.
    Loroch S; Zahedi RP; Sickmann A
    Anal Chem; 2015 Feb; 87(3):1596-604. PubMed ID: 25405705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combination of multistep IMAC enrichment with high-pH reverse phase separation for in-depth phosphoproteomic profiling.
    Yue XS; Hummon AB
    J Proteome Res; 2013 Sep; 12(9):4176-86. PubMed ID: 23927012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography.
    Tsai CF; Hsu CC; Hung JN; Wang YT; Choong WK; Zeng MY; Lin PY; Hong RW; Sung TY; Chen YJ
    Anal Chem; 2014 Jan; 86(1):685-93. PubMed ID: 24313913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscale phosphoproteome analysis of 10,000 cells from human cancer cell lines.
    Masuda T; Sugiyama N; Tomita M; Ishihama Y
    Anal Chem; 2011 Oct; 83(20):7698-703. PubMed ID: 21888424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing phosphoproteome coverage and identification of phosphorylation motifs through combination of different HPLC fractionation methods.
    Chen X; Wu D; Zhao Y; Wong BH; Guo L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jan; 879(1):25-34. PubMed ID: 21130716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complementary workflow for global phosphoproteome analysis.
    Li QR; Ning ZB; Yang XL; Wu JR; Zeng R
    Electrophoresis; 2012 Nov; 33(22):3291-8. PubMed ID: 23097065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractionation of phosphopeptides on strong anion-exchange capillary trap column for large-scale phosphoproteome analysis of microgram samples.
    Wang F; Han G; Yu Z; Jiang X; Sun S; Chen R; Ye M; Zou H
    J Sep Sci; 2010 Jul; 33(13):1879-87. PubMed ID: 20533337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidimensional strategy for sensitive phosphoproteomics incorporating protein prefractionation combined with SIMAC, HILIC, and TiO(2) chromatography applied to proximal EGF signaling.
    Engholm-Keller K; Hansen TA; Palmisano G; Larsen MR
    J Proteome Res; 2011 Dec; 10(12):5383-97. PubMed ID: 21955146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Affinity chromatography based phosphoproteome research on lung cancer cells and its application].
    Zhang B; Wang C; Guo M; Xiao H
    Se Pu; 2021 Jan; 39(1):77-86. PubMed ID: 34227361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of ERLIC-TiO2, HILIC-TiO2, and SCX-TiO2 for global phosphoproteomics approaches.
    Zarei M; Sprenger A; Metzger F; Gretzmeier C; Dengjel J
    J Proteome Res; 2011 Aug; 10(8):3474-83. PubMed ID: 21682340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach.
    Hennrich ML; Groenewold V; Kops GJ; Heck AJ; Mohammed S
    Anal Chem; 2011 Sep; 83(18):7137-43. PubMed ID: 21815630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethylenediaminetetraacetic acid increases identification rate of phosphoproteomics in real biological samples.
    Nakamura T; Myint KT; Oda Y
    J Proteome Res; 2010 Mar; 9(3):1385-91. PubMed ID: 20099890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized IMAC-IMAC protocol for phosphopeptide recovery from complex biological samples.
    Ye J; Zhang X; Young C; Zhao X; Hao Q; Cheng L; Jensen ON
    J Proteome Res; 2010 Jul; 9(7):3561-73. PubMed ID: 20450229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improve the coverage for the analysis of phosphoproteome of HeLa cells by a tandem digestion approach.
    Bian Y; Ye M; Song C; Cheng K; Wang C; Wei X; Zhu J; Chen R; Wang F; Zou H
    J Proteome Res; 2012 May; 11(5):2828-37. PubMed ID: 22468782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilized metal affinity chromatography revisited: pH/acid control toward high selectivity in phosphoproteomics.
    Tsai CF; Wang YT; Chen YR; Lai CY; Lin PY; Pan KT; Chen JY; Khoo KH; Chen YJ
    J Proteome Res; 2008 Sep; 7(9):4058-69. PubMed ID: 18707149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.