These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 23186212)
1. Assembly of the Marburg virus envelope. Mittler E; Kolesnikova L; Herwig A; Dolnik O; Becker S Cell Microbiol; 2013 Feb; 15(2):270-84. PubMed ID: 23186212 [TBL] [Abstract][Full Text] [Related]
2. Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane. Kolesnikova L; Mittler E; Schudt G; Shams-Eldin H; Becker S Cell Microbiol; 2012 Feb; 14(2):182-97. PubMed ID: 21981045 [TBL] [Abstract][Full Text] [Related]
3. Multivesicular bodies as a platform for formation of the Marburg virus envelope. Kolesnikova L; Berghöfer B; Bamberg S; Becker S J Virol; 2004 Nov; 78(22):12277-87. PubMed ID: 15507615 [TBL] [Abstract][Full Text] [Related]
4. Regulation of Marburg virus (MARV) budding by Nedd4.1: a different WW domain of Nedd4.1 is critical for binding to MARV and Ebola virus VP40. Urata S; Yasuda J J Gen Virol; 2010 Jan; 91(Pt 1):228-34. PubMed ID: 19812267 [TBL] [Abstract][Full Text] [Related]
5. Role of the transmembrane domain of marburg virus surface protein GP in assembly of the viral envelope. Mittler E; Kolesnikova L; Strecker T; Garten W; Becker S J Virol; 2007 Apr; 81(8):3942-8. PubMed ID: 17267489 [TBL] [Abstract][Full Text] [Related]
6. Basolateral budding of Marburg virus: VP40 retargets viral glycoprotein GP to the basolateral surface. Kolesnikova L; Ryabchikova E; Shestopalov A; Becker S J Infect Dis; 2007 Nov; 196 Suppl 2():S232-6. PubMed ID: 17940954 [TBL] [Abstract][Full Text] [Related]
7. Budding of Marburgvirus is associated with filopodia. Kolesnikova L; Bohil AB; Cheney RE; Becker S Cell Microbiol; 2007 Apr; 9(4):939-51. PubMed ID: 17140405 [TBL] [Abstract][Full Text] [Related]
8. Interaction of Tsg101 with Marburg virus VP40 depends on the PPPY motif, but not the PT/SAP motif as in the case of Ebola virus, and Tsg101 plays a critical role in the budding of Marburg virus-like particles induced by VP40, NP, and GP. Urata S; Noda T; Kawaoka Y; Morikawa S; Yokosawa H; Yasuda J J Virol; 2007 May; 81(9):4895-9. PubMed ID: 17301151 [TBL] [Abstract][Full Text] [Related]
10. The cytoplasmic domain of Marburg virus GP modulates early steps of viral infection. Mittler E; Kolesnikova L; Hartlieb B; Davey R; Becker S J Virol; 2011 Aug; 85(16):8188-96. PubMed ID: 21680524 [TBL] [Abstract][Full Text] [Related]
11. Measles virus nucleocapsid transport to the plasma membrane requires stable expression and surface accumulation of the viral matrix protein. Runkler N; Pohl C; Schneider-Schaulies S; Klenk HD; Maisner A Cell Microbiol; 2007 May; 9(5):1203-14. PubMed ID: 17217427 [TBL] [Abstract][Full Text] [Related]
12. Marburg virus exploits the Rab11-mediated endocytic pathway in viral-particle production. Furuyama W; Yamada K; Sakaguchi M; Marzi A; Nanbo A Microbiol Spectr; 2024 Sep; 12(9):e0026924. PubMed ID: 39078193 [TBL] [Abstract][Full Text] [Related]
13. A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner. Koehler A; Kolesnikova L; Welzel U; Schudt G; Herwig A; Becker S J Virol; 2016 Feb; 90(3):1444-54. PubMed ID: 26581998 [TBL] [Abstract][Full Text] [Related]
14. Conserved proline-rich region of Ebola virus matrix protein VP40 is essential for plasma membrane targeting and virus-like particle release. Reynard O; Nemirov K; Page A; Mateo M; Raoul H; Weissenhorn W; Volchkov VE J Infect Dis; 2011 Nov; 204 Suppl 3():S884-91. PubMed ID: 21987765 [TBL] [Abstract][Full Text] [Related]
15. VP40, the matrix protein of Marburg virus, is associated with membranes of the late endosomal compartment. Kolesnikova L; Bugany H; Klenk HD; Becker S J Virol; 2002 Feb; 76(4):1825-38. PubMed ID: 11799178 [TBL] [Abstract][Full Text] [Related]
16. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress. Liang J; Sagum CA; Bedford MT; Sidhu SS; Sudol M; Han Z; Harty RN PLoS Pathog; 2017 Jan; 13(1):e1006132. PubMed ID: 28076420 [TBL] [Abstract][Full Text] [Related]
17. Vacuolar protein sorting pathway contributes to the release of Marburg virus. Kolesnikova L; Strecker T; Morita E; Zielecki F; Mittler E; Crump C; Becker S J Virol; 2009 Mar; 83(5):2327-37. PubMed ID: 19091859 [TBL] [Abstract][Full Text] [Related]
18. Tsg101 is recruited by a late domain of the nucleocapsid protein to support budding of Marburg virus-like particles. Dolnik O; Kolesnikova L; Stevermann L; Becker S J Virol; 2010 Aug; 84(15):7847-56. PubMed ID: 20504928 [TBL] [Abstract][Full Text] [Related]
19. A Fluorescently Labeled Marburg Virus Glycoprotein as a New Tool to Study Viral Transport and Assembly. Mittler E; Schudt G; Halwe S; Rohde C; Becker S J Infect Dis; 2018 Nov; 218(suppl_5):S318-S326. PubMed ID: 30165666 [TBL] [Abstract][Full Text] [Related]
20. Establishment and application of an infectious virus-like particle system for Marburg virus. Wenigenrath J; Kolesnikova L; Hoenen T; Mittler E; Becker S J Gen Virol; 2010 May; 91(Pt 5):1325-34. PubMed ID: 20071483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]