These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23186343)

  • 1. Toward anthropomimetic robotics: development, simulation, and control of a musculoskeletal torso.
    Wittmeier S; Alessandro C; Bascarevic N; Dalamagkidis K; Devereux D; Diamond A; Jäntsch M; Jovanovic K; Knight R; Marques HG; Milosavljevic P; Mitra B; Svetozarevic B; Potkonjak V; Pfeifer R; Knoll A; Holland O
    Artif Life; 2013; 19(1):171-93. PubMed ID: 23186343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaching control of a full-torso, modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning.
    Diamond A; Holland OE
    Bioinspir Biomim; 2014 Mar; 9(1):016015. PubMed ID: 24523354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of structured interactions: from a theoretical model to pragmatic robotics.
    Revel A; Andry P
    Neural Netw; 2009 Mar; 22(2):116-25. PubMed ID: 19243912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.
    Ampatzis C; Tuci E; Trianni V; Christensen AL; Dorigo M
    Artif Life; 2009; 15(4):465-84. PubMed ID: 19463056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and control of compliant tensegrity robots through simulation and hardware validation.
    Caluwaerts K; Despraz J; Işçen A; Sabelhaus AP; Bruce J; Schrauwen B; SunSpiral V
    J R Soc Interface; 2014 Sep; 11(98):20140520. PubMed ID: 24990292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromorphic computing hardware and neural architectures for robotics.
    Sandamirskaya Y; Kaboli M; Conradt J; Celikel T
    Sci Robot; 2022 Jun; 7(67):eabl8419. PubMed ID: 35767646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adaptive, self-organizing dynamical system for hierarchical control of bio-inspired locomotion.
    Arena P; Fortuna L; Frasca M; Sicurella G
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1823-37. PubMed ID: 15462448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference of other's internal neural models from active observation.
    Kim KJ; Cho SB
    Biosystems; 2015 Feb; 128():37-47. PubMed ID: 25617791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological computation and morphological control: steps toward a formal theory and applications.
    Füchslin RM; Dzyakanchuk A; Flumini D; Hauser H; Hunt KJ; Luchsinger RH; Reller B; Scheidegger S; Walker R
    Artif Life; 2013; 19(1):9-34. PubMed ID: 23186344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decentralized control with cross-coupled sensory feedback between body and limbs in sprawling locomotion.
    Suzuki S; Kano T; Ijspeert AJ; Ishiguro A
    Bioinspir Biomim; 2019 Sep; 14(6):066010. PubMed ID: 31469116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolving mobile robots in simulated and real environments.
    Miglino O; Lund HH; Nolfi S
    Artif Life; 1995; 2(4):417-34. PubMed ID: 8942055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
    Raj A; Thakur A
    Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symbolic dynamic filtering and language measure for behavior identification of mobile robots.
    Mallapragada G; Ray A; Jin X
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):647-59. PubMed ID: 22067436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the robot motor capability of a robot motor system: a Fitts's-law-inspired approach.
    Lin HI; Lee CS
    Sensors (Basel); 2013 Jul; 13(7):8412-30. PubMed ID: 23820745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creating the brain and interacting with the brain: an integrated approach to understanding the brain.
    Morimoto J; Kawato M
    J R Soc Interface; 2015 Mar; 12(104):20141250. PubMed ID: 25589568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The neuro-robotics paradigm: NEURARM, NEUROExos, HANDEXOS.
    Lenzi T; De Rossi S; Vitiello N; Chiri A; Roccella S; Giovacchini F; Vecchi F; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2430-3. PubMed ID: 19965203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Encouraging behavioral diversity in evolutionary robotics: an empirical study.
    Mouret JB; Doncieux S
    Evol Comput; 2012; 20(1):91-133. PubMed ID: 21838553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reality-Assisted Evolution of Soft Robots through Large-Scale Physical Experimentation: A Review.
    Howison T; Hauser S; Hughes J; Iida F
    Artif Life; 2020; 26(4):484-506. PubMed ID: 33493077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flocking of multiple mobile robots based on backstepping.
    Dong W
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):414-24. PubMed ID: 20709643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.