These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 23186349)

  • 1. A fluid-filled soft robot that exhibits spontaneous switching among versatile spatiotemporal oscillatory patterns inspired by the true slime mold.
    Umedachi T; Idei R; Ito K; Ishiguro A
    Artif Life; 2013; 19(1):67-78. PubMed ID: 23186349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.
    Umedachi T; Idei R; Ito K; Ishiguro A
    Bioinspir Biomim; 2013 Sep; 8(3):035001. PubMed ID: 23981517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully decentralized control of a soft-bodied robot inspired by true slime mold.
    Umedachi T; Takeda K; Nakagaki T; Kobayashi R; Ishiguro A
    Biol Cybern; 2010 Mar; 102(3):261-9. PubMed ID: 20204398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous mode switching in coupled oscillators competing for constant amounts of resources.
    Hirata Y; Aono M; Hara M; Aihara K
    Chaos; 2010 Mar; 20(1):013117. PubMed ID: 20370272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous switching of frequency-locking by periodic stimulus in oscillators of plasmodium of the true slime mold.
    Takamatsu A; Yamamoto T; Fujii T
    Biosystems; 2004; 76(1-3):133-40. PubMed ID: 15351137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environment-dependent morphology in plasmodium of true slime mold Physarum polycephalum and a network growth model.
    Takamatsu A; Takaba E; Takizawa G
    J Theor Biol; 2009 Jan; 256(1):29-44. PubMed ID: 18929578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillators and crank turning: exploiting natural dynamics with a humanoid robot arm.
    Williamson MM
    Philos Trans A Math Phys Eng Sci; 2003 Oct; 361(1811):2207-23. PubMed ID: 14599316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the applicability of the decentralized control mechanism extracted from the true slime mold: a robotic case study with a serpentine robot.
    Sato T; Kano T; Ishiguro A
    Bioinspir Biomim; 2011 Jun; 6(2):026006. PubMed ID: 21502703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The emergence of synchronization behavior in Physarum polycephalum and its particle approximation.
    Tsuda S; Jones J
    Biosystems; 2011 Mar; 103(3):331-41. PubMed ID: 21070831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network structure for control of coupled multiple nonlinear oscillators.
    Funato T; Kurabayashi D
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):675-81. PubMed ID: 18558532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encouraging behavioral diversity in evolutionary robotics: an empirical study.
    Mouret JB; Doncieux S
    Evol Comput; 2012; 20(1):91-133. PubMed ID: 21838553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart behavior of true slime mold in a labyrinth.
    Nakagaki T
    Res Microbiol; 2001 Nov; 152(9):767-70. PubMed ID: 11763236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling and hardware implementation of an amoeba-like cellular automaton.
    Tsompanas MA; Sirakoulis GCh
    Bioinspir Biomim; 2012 Sep; 7(3):036013. PubMed ID: 22570143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decision-making ability of Physarum polycephalum enhanced by its coordinated spatiotemporal oscillatory dynamics.
    Iwayama K; Zhu L; Hirata Y; Aono M; Hara M; Aihara K
    Bioinspir Biomim; 2016 Apr; 11(3):036001. PubMed ID: 27070463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics.
    Aono M; Naruse M; Kim SJ; Wakabayashi M; Hori H; Ohtsu M; Hara M
    Langmuir; 2013 Jun; 29(24):7557-64. PubMed ID: 23565603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergence of self-organized amoeboid movement in a multi-agent approximation of Physarum polycephalum.
    Jones J; Adamatzky A
    Bioinspir Biomim; 2012 Mar; 7(1):016009. PubMed ID: 22278961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of structured interactions: from a theoretical model to pragmatic robotics.
    Revel A; Andry P
    Neural Netw; 2009 Mar; 22(2):116-25. PubMed ID: 19243912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics.
    Wai RJ; Yang ZW
    IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CPG-inspired workspace trajectory generation and adaptive locomotion control for quadruped robots.
    Liu C; Chen Q; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):867-80. PubMed ID: 21216715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.