These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23186395)

  • 1. Interactive effects of chemical and biological controls on food-web composition in saline prairie lakes.
    Cooper RN; Wissel B
    Aquat Biosyst; 2012 Nov; 8(1):29. PubMed ID: 23186395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of trophic complexity in saline prairie lakes as indicated by stable-isotope based community-metrics.
    Cooper RN; Wissel B
    Aquat Biosyst; 2012 Mar; 8(1):6. PubMed ID: 22480379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of drought and pluvial periods on fish and zooplankton communities in prairie lakes: systematic and asystematic responses.
    Starks E; Cooper R; Leavitt PR; Wissel B
    Glob Chang Biol; 2014 Apr; 20(4):1032-42. PubMed ID: 23960001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salinization triggers a trophic cascade in experimental freshwater communities with varying food-chain length.
    Hintz WD; Mattes BM; Schuler MS; Jones DK; Stoler AB; Lind L; Relyea RA
    Ecol Appl; 2017 Apr; 27(3):833-844. PubMed ID: 27992971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of temperature, salinity and fish in structuring the macroinvertebrate community in shallow lakes: implications for effects of climate change.
    Brucet S; Boix D; Nathansen LW; Quintana XD; Jensen E; Balayla D; Meerhoff M; Jeppesen E
    PLoS One; 2012; 7(2):e30877. PubMed ID: 22393354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responses of trophic structure and zooplankton community to salinity and temperature in Tibetan lakes: Implication for the effect of climate warming.
    Lin Q; Xu L; Hou J; Liu Z; Jeppesen E; Han BP
    Water Res; 2017 Nov; 124():618-629. PubMed ID: 28822342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes.
    Eloranta AP; Kahilainen KK; Amundsen PA; Knudsen R; Harrod C; Jones RI
    Ecol Evol; 2015 Apr; 5(8):1664-75. PubMed ID: 25937909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology.
    Last WM; Ginn FM
    Saline Syst; 2005 Nov; 1():10. PubMed ID: 16297237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of invertebrate predation and herbivory in food chains of low complexity.
    Hansson LA; Tranvik LJ
    Oecologia; 1996 Nov; 108(3):542-551. PubMed ID: 28307872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial patterns of mercury in biota of Adirondack, New York lakes.
    Yu X; Driscoll CT; Montesdeoca M; Evers D; Duron M; Williams K; Schoch N; Kamman NC
    Ecotoxicology; 2011 Oct; 20(7):1543-54. PubMed ID: 21691858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both pH and salinity shape the microbial communities of the lakes in Badain Jaran Desert, NW China.
    Banda JF; Zhang Q; Ma L; Pei L; Du Z; Hao C; Dong H
    Sci Total Environ; 2021 Oct; 791():148108. PubMed ID: 34126487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Environmental drivers alter PUFA content in littoral macroinvertebrate assemblages via changes in richness and abundance.
    Strandberg U; Arhonditsis G; Kesti P; Vesterinen J; Vesamäki JS; Taipale SJ; Kankaala P
    Aquat Sci; 2023; 85(4):100. PubMed ID: 37663589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tropical fish community does not recover 45 years after predator introduction.
    Sharpe DM; De León LF; González R; Torchin ME
    Ecology; 2017 Feb; 98(2):412-424. PubMed ID: 27861787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fish-mediated plankton responses to increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake management.
    He H; Jin H; Jeppesen E; Li K; Liu Z; Zhang Y
    Water Res; 2018 Nov; 144():304-311. PubMed ID: 30071399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes.
    Yue L; Kong W; Ji M; Liu J; Morgan-Kiss RM
    Sci Total Environ; 2019 Dec; 696():134001. PubMed ID: 31454602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small-sized omnivorous fish induce stronger effects on food webs than warming and eutrophication in experimental shallow lakes.
    Pacheco JP; Aznarez C; Meerhoff M; Liu Y; Li W; Baattrup-Pedersen A; Yu C; Jeppesen E
    Sci Total Environ; 2021 Nov; 797():148998. PubMed ID: 34346382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotic interactions in temporal trends (1992-2010) of organochlorine contaminants in the aquatic food web of Lake Laberge, Yukon Territory.
    Ryan MJ; Stern GA; Kidd KA; Croft MV; Gewurtz S; Diamond M; Kinnear L; Roach P
    Sci Total Environ; 2013 Jan; 443():80-92. PubMed ID: 23178892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury concentrations in fish and invertebrates of the Finger Lakes in central New York, USA.
    Razavi NR; Halfman JD; Cushman SF; Massey T; Beutner R; Foust J; Gilman B; Cleckner LB
    Ecotoxicology; 2020 Dec; 29(10):1673-1685. PubMed ID: 31820166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of macrophyte ecological groups on food web components of temperate freshwater lakes.
    Karus K; Zagars M; Agasild H; Tuvikene A; Zingel P; Puncule L; Medne-Peipere M; Feldmann T
    Aquat Bot; 2022 Dec; 183():None. PubMed ID: 36466371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between aquatic invertebrate communities, water-level fluctuations and different habitats in a subtropical lake.
    Lemes da Silva AL; Petrucio MM
    Environ Monit Assess; 2018 Aug; 190(9):548. PubMed ID: 30143869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.