These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23186681)

  • 41. High Improvement in Lactic Acid Productivity by New Alkaliphilic Bacterium Using Repeated Batch Fermentation Integrated with Increased Substrate Concentration.
    Abdel-Rahman MA; Hassan SE; Azab MS; Mahin AA; Gaber MA
    Biomed Res Int; 2019; 2019():7212870. PubMed ID: 30792995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced butanol production by immobilized Clostridium beijerinckii TISTR 1461 using zeolite 13X as a carrier.
    Vichuviwat R; Boonsombuti A; Luengnaruemitchai A; Wongkasemjit S
    Bioresour Technol; 2014 Nov; 172():76-82. PubMed ID: 25237776
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lactic acid production from food waste hydrolysate by Lactobacillus pentosus: Focus on nitrogen supplementation, initial sugar concentration, pH, and fed-batch fermentation.
    Lobeda K; Jin Q; Wu J; Zhang W; Huang H
    J Food Sci; 2022 Jul; 87(7):3071-3083. PubMed ID: 35669993
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum.
    Zhang Y; Vadlani PV
    J Biosci Bioeng; 2015 Jun; 119(6):694-9. PubMed ID: 25561329
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Repeated intermittent L-lactic acid fermentation technology by self-immobilized Rhizopus oryzae].
    Jiang S; Zheng Z; Zhu Y; Wu X; Pan L; Luo S; Du W
    Sheng Wu Gong Cheng Xue Bao; 2008 Oct; 24(10):1729-33. PubMed ID: 19149184
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative genomics and transcriptome analysis of Lactobacillus rhamnosus ATCC 11443 and the mutant strain SCT-10-10-60 with enhanced L-lactic acid production capacity.
    Sun L; Lu Z; Li J; Sun F; Huang R
    Mol Genet Genomics; 2018 Feb; 293(1):265-276. PubMed ID: 29159508
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lactic acid fermentation in cell-recycle membrane bioreactor.
    Choudhury B; Swaminathan T
    Appl Biochem Biotechnol; 2006 Feb; 128(2):171-84. PubMed ID: 16484726
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of lactic acid from cheese whey by batch and repeated batch cultures of Lactobacillus sp. RKY2.
    Kim HO; Wee YJ; Kim JN; Yun JS; Ryu HW
    Appl Biochem Biotechnol; 2006; 129-132():694-704. PubMed ID: 16915680
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Production of lactic acid from paper sludge by simultaneous saccharification and fermentation.
    Lee SM; Koo YM; Lin J
    Adv Biochem Eng Biotechnol; 2004; 87():173-94. PubMed ID: 15217107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of supplementation by different nitrogen sources on the production of lactic acid from date juice by Lactobacillus casei subsp. rhamnosus.
    Nancib N; Nancib A; Boudjelal A; Benslimane C; Blanchard F; Boudrant J
    Bioresour Technol; 2001 Jun; 78(2):149-53. PubMed ID: 11333033
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei.
    Senthuran A; Senthuran V; Mattiasson B; Kaul R
    Biotechnol Bioeng; 1997 Sep; 55(6):841-53. PubMed ID: 18636595
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly accumulative production of L(+)-lactate from glucose by crystallization fermentation with immobilized Rhizopus oryzae.
    Yamane T; Tanaka R
    J Biosci Bioeng; 2013 Jan; 115(1):90-5. PubMed ID: 22938823
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison between response surface methodology and genetic algorithm analysis to optimize lactic acid production by Lactobacillus rhamnosus and Lactobacillus acidophilus under ultrasonic pretreatment.
    Jafarpour D; Hashemi SMB; Abedi E; Mousavifard M; Sayadi M
    FEMS Microbiol Lett; 2022 Feb; 368(21-24):. PubMed ID: 35026006
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biosynthesis of cyclodextrin glucosyltransferase by the free and immobilized cells of Bacillus cereus NRC7 in batch and continuous cultures.
    Abdel-Naby MA; El-Refai HA; Abdel-Fattah AF
    J Appl Microbiol; 2011 Nov; 111(5):1129-37. PubMed ID: 21883731
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optimisation of media and cultivation conditions for L(+)(S)-lactic acid production by Lactobacillus casei NRRL B-441.
    Hujanen M; Linko S; Linko YY; Leisola M
    Appl Microbiol Biotechnol; 2001 Jul; 56(1-2):126-30. PubMed ID: 11499919
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Maximum-biomass prediction of homofermentative Lactobacillus.
    Cui S; Zhao J; Liu X; Chen YQ; Zhang H; Chen W
    J Biosci Bioeng; 2016 Jul; 122(1):52-7. PubMed ID: 26896862
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Yeasts and lactic acid bacteria mixed-specie biofilm formation is a promising cell immobilization technology for ethanol fermentation.
    Abe A; Furukawa S; Watanabe S; Morinaga Y
    Appl Biochem Biotechnol; 2013 Sep; 171(1):72-9. PubMed ID: 23817789
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Utilization for lactic acid production with a new acid hydrolysis of ram horn waste.
    Kurbanoglu EB; Kurbanoglu NI
    FEMS Microbiol Lett; 2003 Aug; 225(1):29-34. PubMed ID: 12900017
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acid-hydrolysis of fish wastes for lactic acid fermentation.
    Gao MT; Hirata M; Toorisaka E; Hano T
    Bioresour Technol; 2006 Dec; 97(18):2414-20. PubMed ID: 16293413
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fed-batch fermentation of Lactobacillus lactis for hyper-production of L-lactic acid.
    Bai DM; Wei Q; Yan ZH; Zhao XM; Li XG; Xu SM
    Biotechnol Lett; 2003 Nov; 25(21):1833-5. PubMed ID: 14677707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.