These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 23186681)

  • 61. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production.
    Neu AK; Pleissner D; Mehlmann K; Schneider R; Puerta-Quintero GI; Venus J
    Bioresour Technol; 2016 Jul; 211():398-405. PubMed ID: 27035470
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells.
    Watanabe I; Miyata N; Ando A; Shiroma R; Tokuyasu K; Nakamura T
    Bioresour Technol; 2012 Nov; 123():695-8. PubMed ID: 22939189
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Parametric optimization and kinetic study of l-lactic acid production by homologous batch fermentation of Lactobacillus pentosus cells.
    Wang J; Huang J; Jiang S; Zhang J; Zhang Q; Ning Y; Fang M; Liu S
    Biotechnol Appl Biochem; 2021 Aug; 68(4):809-822. PubMed ID: 32738151
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High temperature lactic acid production by Bacillus coagulans immobilized in LentiKats.
    Rosenberg M; Rebros M; Kristofíková L; Malátová K
    Biotechnol Lett; 2005 Dec; 27(23-24):1943-7. PubMed ID: 16328994
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium.
    Bove CG; De Angelis M; Gatti M; Calasso M; Neviani E; Gobbetti M
    Proteomics; 2012 Nov; 12(21):3206-18. PubMed ID: 22965658
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by
    Liang S; Jiang W; Song Y; Zhou SF
    J Agric Food Chem; 2020 Jul; 68(29):7660-7669. PubMed ID: 32603099
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Solid state fermentation to obtain vegetable products bio-enriched with isoflavone aglycones using lactic cultures.
    Correa Deza MA; Rodríguez de Olmos A; Garro MS
    Rev Argent Microbiol; 2019; 51(3):201-207. PubMed ID: 30558854
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Lactic acid production from cellulosic material by synergetic hydrolysis and fermentation.
    Shen X; Xia L
    Appl Biochem Biotechnol; 2006 Jun; 133(3):251-62. PubMed ID: 16720905
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Volatile profile of elderberry juice: Effect of lactic acid fermentation using L. plantarum, L. rhamnosus and L. casei strains.
    Ricci A; Cirlini M; Levante A; Dall'Asta C; Galaverna G; Lazzi C
    Food Res Int; 2018 Mar; 105():412-422. PubMed ID: 29433231
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients.
    Bustos G; Moldes AB; Cruz JM; Domínguez JM
    J Agric Food Chem; 2004 Feb; 52(4):801-8. PubMed ID: 14969534
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Extracellular protease derived from lactic acid bacteria stimulates the fermentative lactic acid production from the by-products of rice as a biomass refinery function.
    Watanabe M; Techapun C; Kuntiya A; Leksawasdi N; Seesuriyachan P; Chaiyaso T; Takenaka S; Maeda I; Koyama M; Nakamura K
    J Biosci Bioeng; 2017 Feb; 123(2):245-251. PubMed ID: 27667020
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Immobilization of Actinobacillus succinogenes by adhesion or entrapment for the production of succinic acid.
    Corona-González RI; Miramontes-Murillo R; Arriola-Guevara E; Guatemala-Morales G; Toriz G; Pelayo-Ortiz C
    Bioresour Technol; 2014 Jul; 164():113-8. PubMed ID: 24844165
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Cell-recycle continuous fermentation of Enterococcus faecalis RKY1 for economical production of lactic acid by reduction of yeast extract supplementation.
    Lee RK; Ryu HW; Oh H; Kim M; Wee YJ
    J Microbiol Biotechnol; 2014 May; 24(5):661-6. PubMed ID: 24561722
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: enhancement of survivability and thermotolerance.
    Shaharuddin S; Muhamad II
    Carbohydr Polym; 2015 Mar; 119():173-81. PubMed ID: 25563958
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Coupled lactic acid fermentation and adsorption.
    Chen C; Ju LK
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):170-4. PubMed ID: 12111142
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mild heat stress limited the post-acidification caused by Lactobacillus rhamnosus hsryfm 1301 in fermented milk.
    Zhang C; Yang L; Gu R; Ding Z; Guan C; Lu M; Gu R
    Biotechnol Lett; 2019 May; 41(4-5):633-639. PubMed ID: 30929103
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optimization of immobilization conditions for Lactobacillus pentosus cells.
    Wang J; Huang J; Guo H; Jiang S; Zhang J; Ning Y; Fang M; Liu S
    Bioprocess Biosyst Eng; 2020 Jun; 43(6):1071-1079. PubMed ID: 32036453
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Reduction of water consumption in bioethanol production from triticale by recycling the stillage liquid phase.
    Gumienna M; Lasik M; Szambelan K; Czarnecki Z
    Acta Sci Pol Technol Aliment; 2011; 10(4):467-74. PubMed ID: 22230928
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Feasibility of exhausted sugar beet pulp as raw material for lactic acid production.
    Díaz AB; González C; Marzo C; Caro I; Blandino A
    J Sci Food Agric; 2020 May; 100(7):3036-3045. PubMed ID: 32057099
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation.
    Marazza JA; Garro MS; de Giori GS
    Food Microbiol; 2009 May; 26(3):333-9. PubMed ID: 19269578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.