These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 23186687)
21. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Yanagisawa M; Kawai S; Murata K Bioengineered; 2013; 4(4):224-35. PubMed ID: 23314751 [TBL] [Abstract][Full Text] [Related]
22. Using recombinant cyanobacterium (Synechococcus elongatus) with increased carbohydrate productivity as feedstock for bioethanol production via separate hydrolysis and fermentation process. Chow TJ; Su HY; Tsai TY; Chou HH; Lee TM; Chang JS Bioresour Technol; 2015 May; 184():33-41. PubMed ID: 25453434 [TBL] [Abstract][Full Text] [Related]
23. Potential use of feedlot cattle manure for bioethanol production. Vancov T; Schneider RC; Palmer J; McIntosh S; Stuetz R Bioresour Technol; 2015 May; 183():120-8. PubMed ID: 25727759 [TBL] [Abstract][Full Text] [Related]
24. Fermentation of Mannitol Extracts From Brown Macro Algae by Thermophilic Chades T; Scully SM; Ingvadottir EM; Orlygsson J Front Microbiol; 2018; 9():1931. PubMed ID: 30177924 [TBL] [Abstract][Full Text] [Related]
25. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review. Hung CH; Chang YT; Chang YJ Bioresour Technol; 2011 Sep; 102(18):8437-44. PubMed ID: 21429742 [TBL] [Abstract][Full Text] [Related]
26. Use of the mannitol pathway in fructose fermentation of Oenococcus oeni due to limiting redox regeneration capacity of the ethanol pathway. Richter H; Hamann I; Unden G Arch Microbiol; 2003 Apr; 179(4):227-33. PubMed ID: 12677361 [TBL] [Abstract][Full Text] [Related]
27. Co-production of biodiesel and alginate from Laminaria japonica. Kim GY; Seo YH; Kim I; Han JI Sci Total Environ; 2019 Jul; 673():750-755. PubMed ID: 31003102 [TBL] [Abstract][Full Text] [Related]
28. Maximizing the utilization of Laminaria japonica as biomass via improvement of alginate lyase activity in a two-phase fermentation system. Oh Y; Xu X; Kim JY; Park JM Biotechnol J; 2015 Aug; 10(8):1281-8. PubMed ID: 26098412 [TBL] [Abstract][Full Text] [Related]
29. Characterisation and evaluation of a novel feedstock, Manihot glaziovii, Muell. Arg, for production of bioenergy carriers: Bioethanol and biogas. Moshi AP; Crespo CF; Badshah M; Hosea KMM; Mshandete AM; Elisante E; Mattiasson B Bioresour Technol; 2014 Nov; 172():58-67. PubMed ID: 25237774 [TBL] [Abstract][Full Text] [Related]
30. Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Lee OK; Oh YK; Lee EY Bioresour Technol; 2015 Nov; 196():22-7. PubMed ID: 26218538 [TBL] [Abstract][Full Text] [Related]
31. Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Sasaki Y; Takagi T; Motone K; Shibata T; Kuroda K; Ueda M Biosci Biotechnol Biochem; 2018 Aug; 82(8):1459-1462. PubMed ID: 29708475 [TBL] [Abstract][Full Text] [Related]
32. Bioethanol Production Using Waste Seaweed Obtained from Gwangalli Beach, Busan, Korea by Co-culture of Yeasts with Adaptive Evolution. Sunwoo IY; Kwon JE; Nguyen TH; Ra CH; Jeong GT; Kim SK Appl Biochem Biotechnol; 2017 Nov; 183(3):966-979. PubMed ID: 28455807 [TBL] [Abstract][Full Text] [Related]
33. Effects of yeast immobilization on bioethanol production. Borovikova D; Scherbaka R; Patmalnieks A; Rapoport A Biotechnol Appl Biochem; 2014; 61(1):33-9. PubMed ID: 24180336 [TBL] [Abstract][Full Text] [Related]
34. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol--comparison of five pretreatment technologies. Schultz-Jensen N; Thygesen A; Leipold F; Thomsen ST; Roslander C; Lilholt H; Bjerre AB Bioresour Technol; 2013 Jul; 140():36-42. PubMed ID: 23672937 [TBL] [Abstract][Full Text] [Related]
35. Prospective technology on bioethanol production from photofermentation. Costa RL; Oliveira TV; Ferreira Jde S; Cardoso VL; Batista FR Bioresour Technol; 2015 Apr; 181():330-7. PubMed ID: 25678298 [TBL] [Abstract][Full Text] [Related]
36. Sequential hydrolysis of waste newspaper and bioethanol production from the hydrolysate. Wu FC; Huang SS; Shih IL Bioresour Technol; 2014 Sep; 167():159-68. PubMed ID: 24980028 [TBL] [Abstract][Full Text] [Related]
37. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Kim KH; Choi IS; Kim HM; Wi SG; Bae HJ Bioresour Technol; 2014 Feb; 153():47-54. PubMed ID: 24333701 [TBL] [Abstract][Full Text] [Related]
38. Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass. Papa G; Rodriguez S; George A; Schievano A; Orzi V; Sale KL; Singh S; Adani F; Simmons BA Bioresour Technol; 2015 May; 183():101-10. PubMed ID: 25725408 [TBL] [Abstract][Full Text] [Related]
39. Bioethanol fermentation as alternative valorization route of agricultural digestate according to a biorefinery approach. Sambusiti C; Monlau F; Barakat A Bioresour Technol; 2016 Jul; 212():289-295. PubMed ID: 27115615 [TBL] [Abstract][Full Text] [Related]
40. Biofuel Production Based on Carbohydrates from Both Brown and Red Macroalgae: Recent Developments in Key Biotechnologies. Kawai S; Murata K Int J Mol Sci; 2016 Feb; 17(2):145. PubMed ID: 26861307 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]