BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23186724)

  • 1. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.
    Carrera AL; Bertiller MB
    J Environ Manage; 2013 Jan; 114():505-11. PubMed ID: 23186724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of long-term grazing disturbance on the belowground storage of organic carbon in the Patagonian Monte, Argentina.
    Larreguy C; Carrera AL; Bertiller MB
    J Environ Manage; 2014 Feb; 134():47-55. PubMed ID: 24463848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does sheep selectivity along grazing paths negatively affect biological crusts and soil seed banks in arid shrublands? A case study in the Patagonian Monte, Argentina.
    Bertiller MB; Ares JO
    J Environ Manage; 2011 Aug; 92(8):2091-6. PubMed ID: 21511391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductions of plant cover induced by sheep grazing change the above-belowground partition and chemistry of organic C stocks in arid rangelands of Patagonian Monte, Argentina.
    Larreguy C; Carrera AL; Bertiller MB
    J Environ Manage; 2017 Sep; 199():139-147. PubMed ID: 28527740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urbanization-related changes in European aspen (Populus tremula L.): leaf traits and litter decomposition.
    Nikula S; Vapaavuori E; Manninen S
    Environ Pollut; 2010 Jun; 158(6):2132-42. PubMed ID: 20338678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf strategies and soil N across a regional humidity gradient in Patagonia.
    Bertiller MB; Mazzarino MJ; Carrera AL; Diehl P; Satti P; Gobbi M; Sain CL
    Oecologia; 2006 Jul; 148(4):612-24. PubMed ID: 16586111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands.
    Garibaldi LA; Semmartin M; Chaneton EJ
    Oecologia; 2007 Apr; 151(4):650-62. PubMed ID: 17242908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity.
    Li HC; Hu YL; Mao R; Zhao Q; Zeng DH
    PLoS One; 2015; 10(12):e0144665. PubMed ID: 26657180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colonization and decomposition of salal (Gaultheria shallon) leaf litter by saprobic fungi in successional forests on coastal British Columbia.
    Osono T; Iwamoto S; Trofymow JA
    Can J Microbiol; 2008 Jun; 54(6):427-34. PubMed ID: 18535627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Litterfall and organic matter decomposition in a seasonal forest of the eastern Chaco (Argentina).
    Carnevale NJ; Lewis JP
    Rev Biol Trop; 2001 Mar; 49(1):203-12. PubMed ID: 11795149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon and nitrogen status of litterfall, litter decomposition and soil in even-aged larch, red pine and rigitaeda pine plantations.
    Kim C; Jeong J; Cho HS; Son Y
    J Plant Res; 2010 Jul; 123(4):403-9. PubMed ID: 20195884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid nutrient cycling in leaf litter from invasive plants in Hawai'i.
    Allison SD; Vitousek PM
    Oecologia; 2004 Dec; 141(4):612-9. PubMed ID: 15549401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dinitrogen-fixing Acacia species from phosphorus-impoverished soils resorb leaf phosphorus efficiently.
    He H; Bleby TM; Veneklaas EJ; Lambers H
    Plant Cell Environ; 2011 Dec; 34(12):2060-70. PubMed ID: 21819412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changing leaf litter feedbacks on plant production across contrasting sub-arctic peatland species and growth forms.
    Dorrepaal E; Cornelissen JH; Aerts R
    Oecologia; 2007 Mar; 151(2):251-61. PubMed ID: 17089140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of shrub tree layer, leaf litter decomposition and N release in a Brazilian Cerrado under N, P and N plus P additions.
    Jacobson TK; Bustamante MM; Kozovits AR
    Environ Pollut; 2011 Oct; 159(10):2236-42. PubMed ID: 21074919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition.
    Lucisine P; Lecerf A; Danger M; Felten V; Aran D; Auclerc A; Gross EM; Huot H; Morel JL; Muller S; Nahmani J; Maunoury-Danger F
    Sci Total Environ; 2015 Dec; 537():213-24. PubMed ID: 26282755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fire frequency on oak litter decomposition and nitrogen dynamics.
    Hernández DL; Hobbie SE
    Oecologia; 2008 Dec; 158(3):535-43. PubMed ID: 18850116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decomposition in soil microcosms of leaves of the metallophyte Arabidopsis halleri: effect of leaf-associated heavy metals on biodegradation.
    Boucher U; Balabane M; Lamy I; Cambier P
    Environ Pollut; 2005 May; 135(2):187-94. PubMed ID: 15734579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term effects of rainforest disturbance on the nutrient composition of throughfall, organic layer percolate and soil solution at Mt. Kilimanjaro.
    Schrumpf M; Axmacher JC; Zech W; Lehmann J; Lyaruu HV
    Sci Total Environ; 2007 Apr; 376(1-3):241-54. PubMed ID: 17335872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.