These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23186724)

  • 1. Combined effects of leaf litter and soil microsite on decomposition process in arid rangelands.
    Carrera AL; Bertiller MB
    J Environ Manage; 2013 Jan; 114():505-11. PubMed ID: 23186724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of long-term grazing disturbance on the belowground storage of organic carbon in the Patagonian Monte, Argentina.
    Larreguy C; Carrera AL; Bertiller MB
    J Environ Manage; 2014 Feb; 134():47-55. PubMed ID: 24463848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does sheep selectivity along grazing paths negatively affect biological crusts and soil seed banks in arid shrublands? A case study in the Patagonian Monte, Argentina.
    Bertiller MB; Ares JO
    J Environ Manage; 2011 Aug; 92(8):2091-6. PubMed ID: 21511391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reductions of plant cover induced by sheep grazing change the above-belowground partition and chemistry of organic C stocks in arid rangelands of Patagonian Monte, Argentina.
    Larreguy C; Carrera AL; Bertiller MB
    J Environ Manage; 2017 Sep; 199():139-147. PubMed ID: 28527740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Urbanization-related changes in European aspen (Populus tremula L.): leaf traits and litter decomposition.
    Nikula S; Vapaavuori E; Manninen S
    Environ Pollut; 2010 Jun; 158(6):2132-42. PubMed ID: 20338678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf strategies and soil N across a regional humidity gradient in Patagonia.
    Bertiller MB; Mazzarino MJ; Carrera AL; Diehl P; Satti P; Gobbi M; Sain CL
    Oecologia; 2006 Jul; 148(4):612-24. PubMed ID: 16586111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands.
    Garibaldi LA; Semmartin M; Chaneton EJ
    Oecologia; 2007 Apr; 151(4):650-62. PubMed ID: 17242908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Nitrogen Addition on Litter Decomposition and CO2 Release: Considering Changes in Litter Quantity.
    Li HC; Hu YL; Mao R; Zhao Q; Zeng DH
    PLoS One; 2015; 10(12):e0144665. PubMed ID: 26657180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colonization and decomposition of salal (Gaultheria shallon) leaf litter by saprobic fungi in successional forests on coastal British Columbia.
    Osono T; Iwamoto S; Trofymow JA
    Can J Microbiol; 2008 Jun; 54(6):427-34. PubMed ID: 18535627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Litterfall and organic matter decomposition in a seasonal forest of the eastern Chaco (Argentina).
    Carnevale NJ; Lewis JP
    Rev Biol Trop; 2001 Mar; 49(1):203-12. PubMed ID: 11795149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon and nitrogen status of litterfall, litter decomposition and soil in even-aged larch, red pine and rigitaeda pine plantations.
    Kim C; Jeong J; Cho HS; Son Y
    J Plant Res; 2010 Jul; 123(4):403-9. PubMed ID: 20195884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid nutrient cycling in leaf litter from invasive plants in Hawai'i.
    Allison SD; Vitousek PM
    Oecologia; 2004 Dec; 141(4):612-9. PubMed ID: 15549401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dinitrogen-fixing Acacia species from phosphorus-impoverished soils resorb leaf phosphorus efficiently.
    He H; Bleby TM; Veneklaas EJ; Lambers H
    Plant Cell Environ; 2011 Dec; 34(12):2060-70. PubMed ID: 21819412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changing leaf litter feedbacks on plant production across contrasting sub-arctic peatland species and growth forms.
    Dorrepaal E; Cornelissen JH; Aerts R
    Oecologia; 2007 Mar; 151(2):251-61. PubMed ID: 17089140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of shrub tree layer, leaf litter decomposition and N release in a Brazilian Cerrado under N, P and N plus P additions.
    Jacobson TK; Bustamante MM; Kozovits AR
    Environ Pollut; 2011 Oct; 159(10):2236-42. PubMed ID: 21074919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Litter chemistry prevails over litter consumers in mediating effects of past steel industry activities on leaf litter decomposition.
    Lucisine P; Lecerf A; Danger M; Felten V; Aran D; Auclerc A; Gross EM; Huot H; Morel JL; Muller S; Nahmani J; Maunoury-Danger F
    Sci Total Environ; 2015 Dec; 537():213-24. PubMed ID: 26282755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fire frequency on oak litter decomposition and nitrogen dynamics.
    Hernández DL; Hobbie SE
    Oecologia; 2008 Dec; 158(3):535-43. PubMed ID: 18850116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decomposition in soil microcosms of leaves of the metallophyte Arabidopsis halleri: effect of leaf-associated heavy metals on biodegradation.
    Boucher U; Balabane M; Lamy I; Cambier P
    Environ Pollut; 2005 May; 135(2):187-94. PubMed ID: 15734579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term effects of rainforest disturbance on the nutrient composition of throughfall, organic layer percolate and soil solution at Mt. Kilimanjaro.
    Schrumpf M; Axmacher JC; Zech W; Lehmann J; Lyaruu HV
    Sci Total Environ; 2007 Apr; 376(1-3):241-54. PubMed ID: 17335872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.