BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23186786)

  • 1. Cell-mediated degradation of strontium-doped calcium polyphosphate scaffold for bone tissue engineering.
    Gu Z; Wang H; Li L; Wang Q; Yu X
    Biomed Mater; 2012 Dec; 7(6):065007. PubMed ID: 23186786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel strontium-doped calcium polyphosphate/erythromycin/poly(vinyl alcohol) composite for bone tissue engineering.
    Song W; Ren W; Wan C; Esquivel AO; Shi T; Blasier R; Markel DC
    J Biomed Mater Res A; 2011 Sep; 98(3):359-71. PubMed ID: 21626667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering.
    Gu Z; Xie H; Li L; Zhang X; Liu F; Yu X
    J Mater Sci Mater Med; 2013 May; 24(5):1251-60. PubMed ID: 23430336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts.
    Gu Z; Zhang X; Li L; Wang Q; Yu X; Feng T
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):274-81. PubMed ID: 25428072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering.
    Liu F; Zhang X; Yu X; Xu Y; Feng T; Ren D
    J Mater Sci Mater Med; 2011 Mar; 22(3):683-92. PubMed ID: 21287239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties.
    Wang X; Gu Z; Jiang B; Li L; Yu X
    Biomater Sci; 2016 Apr; 4(4):678-88. PubMed ID: 26870855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the degradation, biocompatibility and osteogenesis behavior of lithium-doped calcium polyphosphate for bone tissue engineering.
    Ma Y; Li Y; Hao J; Ma B; Di T; Dong H
    Biomed Mater Eng; 2019; 30(1):23-36. PubMed ID: 30530956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A promising scaffold with excellent cytocompatibility and pro-angiogenesis action for dental tissue engineering: Strontium-doped calcium polyphosphate.
    Qin H; Yang Z; Li L; Yang X; Liu J; Chen X; Yu X
    Dent Mater J; 2016; 35(2):241-9. PubMed ID: 27041014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds.
    Qiu K; Zhao XJ; Wan CX; Zhao CS; Chen YW
    Biomaterials; 2006 Mar; 27(8):1277-86. PubMed ID: 16143392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro study of strontium doped calcium polyphosphate-modified arteries fixed by dialdehyde carboxymethyl cellulose for vascular scaffolds.
    Wang X; Tang P; Xu Y; Yang X; Yu X
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1583-1590. PubMed ID: 27103494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel alkali metals/strontium co-substituted calcium polyphosphate scaffolds in bone tissue engineering.
    Song W; Wang Q; Wan C; Shi T; Markel D; Blaiser R; Ren W
    J Biomed Mater Res B Appl Biomater; 2011 Aug; 98(2):255-62. PubMed ID: 21732528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The inhibitory effect of strontium-doped calcium polyphosphate particles on cytokines from macrophages and osteoblasts leading to aseptic loosening in vitro.
    Huang C; Li L; Yu X; Gu Z; Zhang X
    Biomed Mater; 2014 Apr; 9(2):025010. PubMed ID: 24518283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of processing parameters on the degradation of calcium polyphosphate bioceramic for bone tissue scaffolds].
    Qin Y; Yu X; Chen Y; Ding Y; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):794-7. PubMed ID: 17899747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds.
    Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U
    Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications.
    Tian M; Chen F; Song W; Song Y; Chen Y; Wan C; Yu X; Zhang X
    J Mater Sci Mater Med; 2009 Jul; 20(7):1505-12. PubMed ID: 19267259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of K/Sr co-doped calcium polyphosphate bioceramic as scaffolds for bone substitutes.
    Xie H; Wang Q; Ye Q; Wan C; Li L
    J Mater Sci Mater Med; 2012 Apr; 23(4):1033-44. PubMed ID: 22311075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Advances in research on calcium polyphosphate bioceramic for bone tissue engineering scaffold].
    Qiu K; Chen X; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Jun; 22(3):614-7. PubMed ID: 16013272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold.
    Wang Y; Yang X; Gu Z; Qin H; Li L; Liu J; Yu X
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():185-192. PubMed ID: 27207053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro osteoclast-like and osteoblast cells' response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering.
    Wepener I; Richter W; van Papendorp D; Joubert AM
    J Mater Sci Mater Med; 2012 Dec; 23(12):3029-40. PubMed ID: 22965382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable porous calcium polyphosphate scaffolds for the three-dimensional culture of dental pulp cells.
    Wang FM; Qiu K; Hu T; Wan CX; Zhou XD; Gutmann JL
    Int Endod J; 2006 Jun; 39(6):477-83. PubMed ID: 16674743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.