These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23187159)

  • 41. Combined electric and acoustic hearing performance with Zebra® speech processor: speech reception, place, and temporal coding evaluation.
    Vaerenberg B; Péan V; Lesbros G; De Ceulaer G; Schauwers K; Daemers K; Gnansia D; Govaerts PJ
    Cochlear Implants Int; 2013 Jun; 14(3):150-7. PubMed ID: 23321588
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Clinical evaluation of signal-to-noise ratio-based noise reduction in Nucleus® cochlear implant recipients.
    Dawson PW; Mauger SJ; Hersbach AA
    Ear Hear; 2011; 32(3):382-90. PubMed ID: 21206365
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Word recognition for temporally and spectrally distorted materials: the effects of age and hearing loss.
    Smith SL; Pichora-Fuller MK; Wilson RH; Macdonald EN
    Ear Hear; 2012; 33(3):349-66. PubMed ID: 22343546
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cochlear implant performance in geriatric patients.
    Lenarz M; Sönmez H; Joseph G; Büchner A; Lenarz T
    Laryngoscope; 2012 Jun; 122(6):1361-5. PubMed ID: 22539093
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An adaptive Australian Sentence Test in Noise (AuSTIN).
    Dawson PW; Hersbach AA; Swanson BA
    Ear Hear; 2013 Sep; 34(5):592-600. PubMed ID: 23598772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Signal-to-noise ratio adaptive post-filtering method for intelligibility enhancement of telephone speech.
    Jokinen E; Yrttiaho S; Pulakka H; Vainio M; Alku P
    J Acoust Soc Am; 2012 Dec; 132(6):3990-4001. PubMed ID: 23231128
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Speech understanding in noise with the Roger Pen, Naida CI Q70 processor, and integrated Roger 17 receiver in a multi-talker network.
    De Ceulaer G; Bestel J; Mülder HE; Goldbeck F; de Varebeke SP; Govaerts PJ
    Eur Arch Otorhinolaryngol; 2016 May; 273(5):1107-14. PubMed ID: 25983309
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users.
    Won JH; Drennan WR; Rubinstein JT
    J Assoc Res Otolaryngol; 2007 Sep; 8(3):384-92. PubMed ID: 17587137
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of Individual Cochlear Implant Recipient Speech Perception With the Output Signal to Noise Ratio Metric.
    Watkins GD; Swanson BA; Suaning GJ
    Ear Hear; 2020; 41(5):1270-1281. PubMed ID: 32053546
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving performance in noise for hearing aids and cochlear implants using coherent modulation filtering.
    Won JH; Schimmel SM; Drennan WR; Souza PE; Atlas L; Rubinstein JT
    Hear Res; 2008 May; 239(1-2):1-11. PubMed ID: 18295993
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of a transient noise reduction algorithm on speech intelligibility in noise, noise tolerance and perceived annoyance in cochlear implant users.
    Dingemanse JG; Vroegop JL; Goedegebure A
    Int J Audiol; 2018 May; 57(5):360-369. PubMed ID: 29334269
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Restoring speech perception with cochlear implants by spanning defective electrode contacts.
    Frijns JH; Snel-Bongers J; Vellinga D; Schrage E; Vanpoucke FJ; Briaire JJ
    Acta Otolaryngol; 2013 Apr; 133(4):394-9. PubMed ID: 23294241
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancing speech envelope by integrating hair-cell adaptation into cochlear implant processing.
    Azadpour M; Smith RL
    Hear Res; 2016 Dec; 342():48-57. PubMed ID: 27697486
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise.
    Arenberg JG; Parkinson WS; Litvak L; Chen C; Kreft HA; Oxenham AJ
    Ear Hear; 2018; 39(6):1136-1145. PubMed ID: 29529006
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A wavelet-based noise reduction algorithm and its clinical evaluation in cochlear implants.
    Ye H; Deng G; Mauger SJ; Hersbach AA; Dawson PW; Heasman JM
    PLoS One; 2013; 8(9):e75662. PubMed ID: 24086605
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ForwardFocus with cochlear implant recipients in spatially separated and fluctuating competing signals - introduction of a reference metric.
    Hey M; Hocke T; Böhnke B; Mauger SJ
    Int J Audiol; 2019 Dec; 58(12):869-878. PubMed ID: 31464542
    [No Abstract]   [Full Text] [Related]  

  • 57. Psychophysics, fitting, and signal processing for combined hearing aid and cochlear implant stimulation.
    Francart T; McDermott HJ
    Ear Hear; 2013; 34(6):685-700. PubMed ID: 24165299
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Speech onset enhancement improves intelligibility in adverse listening conditions for cochlear implant users.
    Koning R; Wouters J
    Hear Res; 2016 Dec; 342():13-22. PubMed ID: 27697583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New cochlear implant research coding strategy based on the MP3(000™) strategy to reintroduce the virtual channel effect.
    Neben N; Lenarz T; Schuessler M; Harpel T; Buechner A
    Acta Otolaryngol; 2013 May; 133(5):481-90. PubMed ID: 23216089
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A clinical assessment of cochlear implant recipient performance: implications for individualized map settings in specific environments.
    Hey M; Hocke T; Mauger S; Müller-Deile J
    Eur Arch Otorhinolaryngol; 2016 Nov; 273(11):4011-4020. PubMed ID: 27276990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.