These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 23187310)
21. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Li J; He Y; Sun W; Luo Y; Cai H; Pan Y; Shen M; Xia J; Shi X Biomaterials; 2014 Apr; 35(11):3666-77. PubMed ID: 24462358 [TBL] [Abstract][Full Text] [Related]
22. Key Parameters on the Microwave Assisted Synthesis of Magnetic Nanoparticles for MRI Contrast Agents. Brollo MEF; Veintemillas-Verdaguer S; Salván CM; Morales MDP Contrast Media Mol Imaging; 2017; 2017():8902424. PubMed ID: 29348738 [TBL] [Abstract][Full Text] [Related]
23. Effect of the Functionalization Process on the Colloidal, Magnetic Resonance Imaging, and Bioelimination Properties of Mono- or Bisphosphonate-Anchored Dendronized Iron Oxide Nanoparticles. Walter A; Garofalo A; Bonazza P; Meyer F; Martinez H; Fleutot S; Billotey C; Taleb J; Felder-Flesch D; Begin-Colin S Chempluschem; 2017 Apr; 82(4):647-659. PubMed ID: 31961585 [TBL] [Abstract][Full Text] [Related]
24. Different cell responses induced by exposure to maghemite nanoparticles. Luengo Y; Nardecchia S; Morales MP; Serrano MC Nanoscale; 2013 Dec; 5(23):11428-37. PubMed ID: 23963338 [TBL] [Abstract][Full Text] [Related]
25. Glycol chitosan/heparin immobilized iron oxide nanoparticles with a tumor-targeting characteristic for magnetic resonance imaging. Yuk SH; Oh KS; Cho SH; Lee BS; Kim SY; Kwak BK; Kim K; Kwon IC Biomacromolecules; 2011 Jun; 12(6):2335-43. PubMed ID: 21506550 [TBL] [Abstract][Full Text] [Related]
27. Ni-Fe2O4 nanoparticles as contrast agents for magnetic resonance imaging. Ahmad T; Rhee I; Hong S; Chang Y; Lee J J Nanosci Nanotechnol; 2011 Jul; 11(7):5645-50. PubMed ID: 22121585 [TBL] [Abstract][Full Text] [Related]
28. Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. Chen W; Yi P; Zhang Y; Zhang L; Deng Z; Zhang Z ACS Appl Mater Interfaces; 2011 Oct; 3(10):4085-91. PubMed ID: 21882840 [TBL] [Abstract][Full Text] [Related]
29. Dendrimer-nanoparticle conjugates in nanomedicine. Parat A; Bordeianu C; Dib H; Garofalo A; Walter A; Bégin-Colin S; Felder-Flesch D Nanomedicine (Lond); 2015; 10(6):977-92. PubMed ID: 25867861 [TBL] [Abstract][Full Text] [Related]
30. How a grafting anchor tailors the cellular uptake and in vivo fate of dendronized iron oxide nanoparticles. Bordeianu C; Parat A; Affolter-Zbaraszczuk C; Muller RN; Boutry S; Begin-Colin S; Meyer F; Laurent S; Felder-Flesch D J Mater Chem B; 2017 Jul; 5(26):5152-5164. PubMed ID: 32264101 [TBL] [Abstract][Full Text] [Related]
31. Superparamagnetic iron oxide nanoparticle-embedded encapsulated microbubbles as dual contrast agents of magnetic resonance and ultrasound imaging. Yang F; Li Y; Chen Z; Zhang Y; Wu J; Gu N Biomaterials; 2009 Aug; 30(23-24):3882-90. PubMed ID: 19395082 [TBL] [Abstract][Full Text] [Related]
32. Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Amstad E; Textor M; Reimhult E Nanoscale; 2011 Jul; 3(7):2819-43. PubMed ID: 21629911 [TBL] [Abstract][Full Text] [Related]
33. Folic acid-conjugated MnO nanoparticles as a T1 contrast agent for magnetic resonance imaging of tiny brain gliomas. Chen N; Shao C; Qu Y; Li S; Gu W; Zheng T; Ye L; Yu C ACS Appl Mater Interfaces; 2014 Nov; 6(22):19850-7. PubMed ID: 25335117 [TBL] [Abstract][Full Text] [Related]
34. Rapid synthesis of PEGylated ultrasmall gadolinium oxide nanoparticles for cell labeling and tracking with MRI. Faucher L; Tremblay M; Lagueux J; Gossuin Y; Fortin MA ACS Appl Mater Interfaces; 2012 Sep; 4(9):4506-15. PubMed ID: 22834680 [TBL] [Abstract][Full Text] [Related]
35. Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Xu W; Kattel K; Park JY; Chang Y; Kim TJ; Lee GH Phys Chem Chem Phys; 2012 Oct; 14(37):12687-700. PubMed ID: 22885983 [TBL] [Abstract][Full Text] [Related]
36. [2-deoxy-D-glucose modified supermagnetic iron oxide nanoparticles enhance the contrasting effect on MRI of human lung adenocarcinoma A549 tumor in nude mice]. Shan X; Yuan D; Xiong F; Gu N; Wang P Zhonghua Zhong Liu Za Zhi; 2014 Feb; 36(2):85-91. PubMed ID: 24796454 [TBL] [Abstract][Full Text] [Related]
37. Phosphatidylcholine-coated iron oxide nanomicelles for in vivo prolonged circulation time with an antibiofouling protein corona. Groult H; Ruiz-Cabello J; Lechuga-Vieco AV; Mateo J; Benito M; Bilbao I; Martínez-Alcázar MP; Lopez JA; Vázquez J; Herranz FF Chemistry; 2014 Dec; 20(50):16662-71. PubMed ID: 25319949 [TBL] [Abstract][Full Text] [Related]
38. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. Lartigue L; Innocenti C; Kalaivani T; Awwad A; Sanchez Duque Mdel M; Guari Y; Larionova J; Guérin C; Montero JL; Barragan-Montero V; Arosio P; Lascialfari A; Gatteschi D; Sangregorio C J Am Chem Soc; 2011 Jul; 133(27):10459-72. PubMed ID: 21604803 [TBL] [Abstract][Full Text] [Related]
39. Physico-chemical and toxicological characterization of iron-containing albumin nanoparticles as platforms for medical imaging. Rosenberger I; Schmithals C; Vandooren J; Bianchessi S; Milani P; Locatelli E; Israel LL; Hübner F; Matteoli M; Lellouche JP; Franchini MC; Passoni L; Scanziani E; Opdenakker G; Piiper A; Kreuter J J Control Release; 2014 Nov; 194():130-7. PubMed ID: 25173842 [TBL] [Abstract][Full Text] [Related]
40. Facile preparation of zwitterion-stabilized superparamagnetic iron oxide nanoparticles (ZSPIONs) as an MR contrast agent for in vivo applications. Kim D; Chae MK; Joo HJ; Jeong IH; Cho JH; Lee C Langmuir; 2012 Jun; 28(25):9634-9. PubMed ID: 22607014 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]