BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 23187366)

  • 1. 3D nanopillar optical antenna photodetectors.
    Senanayake P; Hung CH; Shapiro J; Scofield A; Lin A; Williams BS; Huffaker DL
    Opt Express; 2012 Nov; 20(23):25489-96. PubMed ID: 23187366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon-enhanced nanopillar photodetectors.
    Senanayake P; Hung CH; Shapiro J; Lin A; Liang B; Williams BS; Huffaker DL
    Nano Lett; 2011 Dec; 11(12):5279-83. PubMed ID: 22077757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring plasmonic coupling in hole-cap arrays.
    Schmidt TM; Frederiksen M; Bochenkov V; Sutherland DS
    Beilstein J Nanotechnol; 2015; 6():1-10. PubMed ID: 25671146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin 3D multiplication regions in plasmonically enhanced nanopillar avalanche detectors.
    Senanayake P; Hung CH; Farrell A; Ramirez DA; Shapiro J; Li CK; Wu YR; Hayat MM; Huffaker DL
    Nano Lett; 2012 Dec; 12(12):6448-52. PubMed ID: 23206195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanopillar arrays as biosensors fabricated by electron beam lithography combined with electroplating.
    Liu J; Zhang S; Ma Y; Shao J; Lu B; Chen Y
    Appl Opt; 2015 Mar; 54(9):2537-42. PubMed ID: 25968546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological sensing using hybridization phase of plasmonic resonances with photonic lattice modes in arrays of gold nanoantennas.
    Gutha RR; Sadeghi SM; Sharp C; Wing WJ
    Nanotechnology; 2017 Sep; 28(35):355504. PubMed ID: 28649962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime.
    Neubrech F; Weber D; Katzmann J; Huck C; Toma A; Di Fabrizio E; Pucci A; Härtling T
    ACS Nano; 2012 Aug; 6(8):7326-32. PubMed ID: 22804706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain-Induced Modulation of Localized Surface Plasmon Resonance in Ultrathin Hexagonal Gold Nanoplates.
    Park GS; Min KS; Kwon H; Yoon S; Park S; Kwon JH; Lee S; Jo J; Kim M; Kim SK
    Adv Mater; 2021 Sep; 33(38):e2100653. PubMed ID: 34338357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LSPR enhanced MSM UV photodetectors.
    Butun S; Cinel NA; Ozbay E
    Nanotechnology; 2012 Nov; 23(44):444010. PubMed ID: 23080432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid metal-organic nanocavity arrays for efficient light out-coupling.
    Kolb V; Pflaum J
    Opt Express; 2017 Mar; 25(6):6678-6689. PubMed ID: 28381012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Light Confinement in Metal-Coated Si Nanopillars: Interplay of Plasmonic Effects and Geometric Resonance.
    Kim S; Kim E; Lee YU; Ko E; Park HH; Wu JW; Kim DW
    Nanoscale Res Lett; 2017 Dec; 12(1):151. PubMed ID: 28249367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography.
    Wu K; Rindzevicius T; Schmidt MS; Mogensen KB; Xiao S; Boisen A
    Opt Express; 2015 May; 23(10):12965-78. PubMed ID: 26074549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Far-field and near-field monitoring of hybridized optical modes from Au nanoprisms suspended on a graphene/Si nanopillar array.
    Nien LW; Chen K; Dao TD; Ishii S; Hsueh CH; Nagao T
    Nanoscale; 2017 Nov; 9(43):16950-16959. PubMed ID: 29077124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving All-Inorganic Perovskite Photodetectors by Preferred Orientation and Plasmonic Effect.
    Dong Y; Gu Y; Zou Y; Song J; Xu L; Li J; Xue J; Li X; Zeng H
    Small; 2016 Oct; 12(40):5622-5632. PubMed ID: 27552525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires.
    Paul A; Solis D; Bao K; Chang WS; Nauert S; Vidgerman L; Zubarev ER; Nordlander P; Link S
    ACS Nano; 2012 Sep; 6(9):8105-13. PubMed ID: 22900780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon polariton beams from an electrically excited plasmonic crystal.
    Canneson D; Le Moal E; Cao S; Quélin X; Dallaporta H; Dujardin G; Boer-Duchemin E
    Opt Express; 2016 Nov; 24(23):26186-26200. PubMed ID: 27857355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system.
    Yu B; Woo J; Kong M; O'Carroll DM
    Nanoscale; 2015 Aug; 7(31):13196-206. PubMed ID: 26098863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.