These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 23187471)

  • 1. Wafer-scale highly-transparent and superhydrophilic sapphires for high-performance optics.
    Leem JW; Yu JS
    Opt Express; 2012 Nov; 20(24):26160-6. PubMed ID: 23187471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns.
    Leem JW; Yeh Y; Yu JS
    Opt Express; 2012 Feb; 20(4):4056-66. PubMed ID: 22418164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmittance enhancement of sapphires with antireflective subwavelength grating patterned UV polymer surface structures by soft lithography.
    Lee SH; Leem JW; Yu JS
    Opt Express; 2013 Dec; 21(24):29298-303. PubMed ID: 24514482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband antireflective germanium surfaces based on subwavelength structures for photovoltaic cell applications.
    Leem JW; Song YM; Yu JS
    Opt Express; 2011 Dec; 19(27):26308-17. PubMed ID: 22274215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly transparent sapphire micro-grating structures with large diffuse light scattering.
    Ko YH; Yu JS
    Opt Express; 2011 Aug; 19(16):15574-83. PubMed ID: 21934920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Transmission and Self-Cleaning of Patterned Sapphire Substrates Prepared by Wet Chemical Etching Using Silica Masks.
    Wang GG; Lin ZQ; Zhao DD; Han JC
    Langmuir; 2018 Jul; 34(30):8898-8903. PubMed ID: 29979878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinspired periodic pinecone-shaped Si subwavelength nanostructures for broadband and omnidirectional antireflective surface.
    Leem JW; Yu JS
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7932-8. PubMed ID: 23421159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disordered antireflective subwavelength structures using Ag nanoparticles on fused silica windows.
    Shang P; Xiong SM; Deng QL; Shi LF; Zhang M
    Appl Opt; 2014 Oct; 53(29):6789-96. PubMed ID: 25322384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wafer-scale broadband antireflective silicon fabricated by metal-assisted chemical etching using spin-coating Ag ink.
    Yeo CI; Song YM; Jang SJ; Lee YT
    Opt Express; 2011 Sep; 19 Suppl 5():A1109-16. PubMed ID: 21935253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of optical transmission with random nanohole structures.
    Son J; Verma LK; Danner AJ; Bhatia CS; Yang H
    Opt Express; 2011 Jan; 19 Suppl 1():A35-40. PubMed ID: 21263710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles.
    Park GC; Song YM; Ha JH; Lee YT
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6152-6. PubMed ID: 22121676
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-dependent optical behavior of disordered nanostructures on glass substrates.
    Park GC; Song YM; Kang EK; Lee YT
    Appl Opt; 2012 Aug; 51(24):5890-6. PubMed ID: 22907018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical waveguide sensor based on a porous anodic alumina/aluminum multilayer film.
    Yamaguchi A; Hotta K; Teramae N
    Anal Chem; 2009 Jan; 81(1):105-11. PubMed ID: 19049367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antireflective hydrophobic si subwavelength structures using thermally dewetted Ni/SiO2 nanomask patterns.
    Joo DH; Leem JW; Yu JS
    J Nanosci Nanotechnol; 2011 Nov; 11(11):10130-5. PubMed ID: 22413355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical and electrical properties of Au nanoparticles in two-dimensional networks:an effective cluster model.
    Su H; Li Y; Li XY; Wong KS
    Opt Express; 2009 Nov; 17(24):22223-34. PubMed ID: 19997469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low propagation loss silicon-on-sapphire waveguides for the mid-infrared.
    Li F; Jackson SD; Grillet C; Magi E; Hudson D; Madden SJ; Moghe Y; O'Brien C; Read A; Duvall SG; Atanackovic P; Eggleton BJ; Moss DJ
    Opt Express; 2011 Aug; 19(16):15212-20. PubMed ID: 21934884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-cost fabrication of large area sub-wavelength anti-reflective structures on polymer film using a soft PUA mold.
    Zhang J; Shen S; Dong XX; Chen LS
    Opt Express; 2014 Jan; 22(2):1842-51. PubMed ID: 24515193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.
    Song YM; Jeong Y; Yeo CI; Lee YT
    Opt Express; 2012 Nov; 20(23):A916-23. PubMed ID: 23326839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses.
    Müller A; Jensen OB; Unterhuber A; Le T; Stingl A; Hasler KH; Sumpf B; Erbert G; Andersen PE; Petersen PM
    Opt Express; 2011 Jun; 19(13):12156-63. PubMed ID: 21716452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wideband circular polarization reflector fabricated by glancing angle deposition.
    Park YJ; Sobahan KM; Hwangbo CK
    Opt Express; 2008 Apr; 16(8):5186-92. PubMed ID: 18542620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.