These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 2318765)

  • 1. Body composition and skin temperature variation.
    Frim J; Livingstone SD; Reed LD; Nolan RW; Limmer RE
    J Appl Physiol (1985); 1990 Feb; 68(2):540-3. PubMed ID: 2318765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A thermographic study of the effect of body composition and ambient temperature on the accuracy of mean skin temperature calculations.
    Livingston SD; Nolan RW; Frim J; Reed LD; Limmer RE
    Eur J Appl Physiol Occup Physiol; 1987; 56(1):120-5. PubMed ID: 3830136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and metabolic responses of high and low fat women to cold water immersion.
    Prisby R; Glickman-Weiss EL; Nelson AG; Caine N
    Aviat Space Environ Med; 1999 Sep; 70(9):887-91. PubMed ID: 10503754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body composition in sport: a comparison of a novel ultrasound imaging technique to measure subcutaneous fat tissue compared with skinfold measurement.
    Müller W; Horn M; Fürhapter-Rieger A; Kainz P; Kröpfl JM; Maughan RJ; Ahammer H
    Br J Sports Med; 2013 Nov; 47(16):1028-35. PubMed ID: 24055780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and thermal responses of males with varying body compositions during immersion in moderately cold water.
    Glickman-Weiss EL; Goss FL; Robertson RJ; Metz KF; Cassinelli DA
    Aviat Space Environ Med; 1991 Nov; 62(11):1063-7. PubMed ID: 1741720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcutaneous fat distribution of the abdomen and buttocks in Japanese women aged 20 to 58 years.
    Murakami M; Arai S; Nagai Y; Yamazaki K; Iizuka S
    Appl Human Sci; 1997 Jul; 16(4):167-77. PubMed ID: 9343866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of shivering heat production from core and mean skin temperatures.
    Tikuisis P; Giesbrecht GG
    Eur J Appl Physiol Occup Physiol; 1999 Feb; 79(3):221-9. PubMed ID: 10048626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biometrical characteristics and physiological responses to a local cold exposure of the extremities.
    Savourey G; Sendowski I; Bittel J
    Eur J Appl Physiol Occup Physiol; 1996; 74(1-2):85-90. PubMed ID: 8891505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of near infra-red interactance for assessment of subcutaneous and total body fat.
    Brooke-Wavell K; Jones PR; Norgan NG; Hardman AE
    Eur J Clin Nutr; 1995 Jan; 49(1):57-65. PubMed ID: 7713052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of torso skin temperature under clothing.
    Livingstone SD; Reed LD; Nolan RW; Cattroll SW
    Eur J Appl Physiol Occup Physiol; 1988; 57(2):225-9. PubMed ID: 3349991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between temperature and human leptin physiology in vivo and in vitro.
    Zeyl A; Stocks JM; Taylor NA; Jenkins AB
    Eur J Appl Physiol; 2004 Aug; 92(4-5):571-8. PubMed ID: 15045507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of body fat percentage and body fat distribution on skin surface temperature with infrared thermography.
    Salamunes ACC; Stadnik AMW; Neves EB
    J Therm Biol; 2017 May; 66():1-9. PubMed ID: 28477901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skin heat dissipation: the influence of diabetes, skin thickness, and subcutaneous fat thickness.
    Petrofsky JS; McLellan K; Bains GS; Prowse M; Ethiraju G; Lee S; Gunda S; Lohman E; Schwab E
    Diabetes Technol Ther; 2008 Dec; 10(6):487-93. PubMed ID: 19049378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat balance precedes stabilization of body temperatures during cold water immersion.
    Tikuisis P
    J Appl Physiol (1985); 2003 Jul; 95(1):89-96. PubMed ID: 12639852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcutaneous adipose tissue thickness alters cooling time during cryotherapy.
    Otte JW; Merrick MA; Ingersoll CD; Cordova ML
    Arch Phys Med Rehabil; 2002 Nov; 83(11):1501-5. PubMed ID: 12422316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Heat debt and thermal insulation in women exposed to cold : contribution of direct calorimetry to the study of a mathematical model (author's transl)].
    Gygax PH; Pittet P; Jéquier E
    J Physiol (Paris); 1976 Mar; 72(1):105-29. PubMed ID: 933073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat transfer to deep tissue: the effect of body fat and heating modality.
    Petrofsky JS; Laymon M
    J Med Eng Technol; 2009; 33(5):337-48. PubMed ID: 19440919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between bioelectric impedance and subcutaneous adipose tissue thickness measured by LIPOMETER and skinfold calipers in children.
    Jürimäe T; Sudi K; Payerl D; Leppik A; Jürimäe J; Müller R; Tafeit E
    Eur J Appl Physiol; 2003 Sep; 90(1-2):178-84. PubMed ID: 14504951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Body composition analysis by bioelectrical impedance: effect of skin temperature.
    Caton JR; Molé PA; Adams WC; Heustis DS
    Med Sci Sports Exerc; 1988 Oct; 20(5):489-91. PubMed ID: 3193865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of newborn baby's temperature by human touch: a potentially useful primary care strategy.
    Singh M; Rao G; Malhotra AK; Deorari AK
    Indian Pediatr; 1992 Apr; 29(4):449-52. PubMed ID: 1506096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.