These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 23187668)

  • 1. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.
    Song YM; Jeong Y; Yeo CI; Lee YT
    Opt Express; 2012 Nov; 20 Suppl 6():A916-23. PubMed ID: 23187668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced power generation in concentrated photovoltaics using broadband antireflective coverglasses with moth eye structures.
    Song YM; Jeong Y; Yeo CI; Lee YT
    Opt Express; 2012 Nov; 20(23):A916-23. PubMed ID: 23326839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications.
    Leem JW; Lee HK; Jun DH; Heo J; Park WK; Park JH; Yu JS
    Opt Express; 2014 Mar; 22(5):A328-34. PubMed ID: 24800289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemically synthesized broadband antireflective and hydrophobic GaOOH nanopillars for III-V InGaP/GaAs/Ge triple-junction solar cell applications.
    Leem JW; Lee HK; Jun DH; Heo J; Park WK; Park JH; Yu JS
    Opt Express; 2014 Mar; 22 Suppl 2():A328-34. PubMed ID: 24922242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moth-eye Structured Polydimethylsiloxane Films for High-Efficiency Perovskite Solar Cells.
    Kim MC; Jang S; Choi J; Kang SM; Choi M
    Nanomicro Lett; 2019 Jun; 11(1):53. PubMed ID: 34137987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Newly Developed Broadband Antireflective Nanostructures by Coating a Low-Index MgF
    Yoo GY; Nurrosyid N; Lee S; Jeong Y; Yoon I; Kim C; Kim W; Jang SY; Do YR
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10626-10636. PubMed ID: 32030970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Broadband antireflective glasses with subwavelength structures using randomly distributed Ag nanoparticles.
    Park GC; Song YM; Ha JH; Lee YT
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6152-6. PubMed ID: 22121676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures.
    Chiu MY; Chang CH; Tsai MA; Chang FY; Yu P
    Opt Express; 2010 Sep; 18 Suppl 3():A308-13. PubMed ID: 21165062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns.
    Leem JW; Yeh Y; Yu JS
    Opt Express; 2012 Feb; 20(4):4056-66. PubMed ID: 22418164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-cones for broadband light coupling to high index substrates.
    Buencuerpo J; Torné L; Álvaro R; Llorens JM; Dotor ML; Ripalda JM
    Sci Rep; 2016 Dec; 6():38682. PubMed ID: 27924859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Shapes and Sizes of Moth-Eye-Inspired Structures for the Enhancement of Their Antireflective Properties.
    Choi JS; An JH; Lee JK; Lee JY; Kang SM
    Polymers (Basel); 2020 Feb; 12(2):. PubMed ID: 32024283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antireflective glass nanoholes on optical lenses.
    Lee Y; Bae SI; Eom J; Suh HC; Jeong KH
    Opt Express; 2018 May; 26(11):14786-14791. PubMed ID: 29877414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoimprinting reflow modified moth-eye structures in chalcogenide glass for enhanced broadband antireflection in the mid-infrared.
    Lotz M; Needham J; Jakobsen MH; Taboryski R
    Opt Lett; 2019 Sep; 44(17):4383-4386. PubMed ID: 31465408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Alpha-Particle Irradiation on InGaP/GaAs/Ge Triple-Junction Solar Cells.
    Xu J; Guo M; Lu M; He H; Yang G; Xu J
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29867018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exceptionally omnidirectional broadband light harvesting scheme for multi-junction concentrator solar cells achieved via ZnO nanoneedles.
    Yeh LK; Tian WC; Lai KY; He JH
    Sci Rep; 2016 Dec; 6():39134. PubMed ID: 27966621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of highly transparent glasses with broadband antireflective subwavelength structures.
    Song YM; Choi HJ; Yu JS; Lee YT
    Opt Express; 2010 Jun; 18(12):13063-71. PubMed ID: 20588436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-coated moth-eye hybrid structure for broadband antireflection in the terahertz region.
    Yu X; Goto K; Yasunaga Y; Soeda J; Ono S
    Opt Lett; 2021 Aug; 46(15):3761-3764. PubMed ID: 34329275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle.
    Chuang SY; Chen HL; Shieh J; Lin CH; Cheng CC; Liu HW; Yu CC
    Nanoscale; 2010 May; 2(5):799-805. PubMed ID: 20648327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic subwavelength antireflective gratings on GaAs.
    Sun CH; Ho BJ; Jiang B; Jiang P
    Opt Lett; 2008 Oct; 33(19):2224-6. PubMed ID: 18830359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.