These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 23187675)

  • 1. Enhancement of laser-induced rear surface spallation by pyramid textured structures on silicon wafer solar cells.
    Du ZR; Palina N; Chen J; Aberle AG; Hoex B; Hong MH
    Opt Express; 2012 Nov; 20 Suppl 6():A984-90. PubMed ID: 23187675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of laser-induced rear surface spallation by pyramid textured structures on silicon wafer solar cells.
    Du ZR; Palina N; Chen J; Aberle AG; Hoex B; Hong MH
    Opt Express; 2012 Nov; 20(23):A984-90. PubMed ID: 23326846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving Performance of Organic-Silicon Heterojunction Solar Cells Based on Textured Surface via Acid Processing.
    Dai X; Chen T; Cai H; Wen H; Sun Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14572-7. PubMed ID: 27232372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer.
    Chen HY; Lu HL; Ren QH; Zhang Y; Yang XF; Ding SJ; Zhang DW
    Nanoscale; 2015 Oct; 7(37):15142-8. PubMed ID: 26243694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled modelling approach for optimization of bifacial silicon heterojunction solar cells with multi-scale interface textures.
    Lokar Z; Lipovsek B; Razzaq A; Depauw V; Gordon I; Poortmans J; Krc J; Topic M
    Opt Express; 2019 Sep; 27(20):A1554-A1568. PubMed ID: 31684506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of HfO₂ as a Passivation Layer in the Solar Cell Efficiency Enhancement in Passivated Emitter Rear Cell Type.
    Jha RK; Singh P; Goswami M; Singh BR
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3718-3723. PubMed ID: 31748069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopy analysis of pyramid formation evolution with ultra-low concentrated Na2CO3/NaHCO3 solution on (100) Si for solar cell application.
    Montesdeoca-Santana A; Orive AG; Creus AH; González-Díaz B; Borchert D; Guerrero-Lemus R
    Microsc Microanal; 2013 Apr; 19(2):285-92. PubMed ID: 23406995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical study of pyramid sizes and scattering effects in silicon photovoltaic module stacks.
    Höhn O; Tucher N; Bläsi B
    Opt Express; 2018 Mar; 26(6):A320-A330. PubMed ID: 29609411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced optical absorption in nanohole-textured silicon thin-film solar cells with rear-located metal particles.
    Chen Y; Han W; Yang F
    Opt Lett; 2013 Oct; 38(19):3973-5. PubMed ID: 24081102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Efficiency Silicon Inverted Pyramid-Based Passivated Emitter and Rear Cells.
    Gao K; Liu Y; Fan Y; Shi L; Zhuang Y; Cui Y; Yuan S; Wan Y; Shen W; Huang Z
    Nanoscale Res Lett; 2020 Aug; 15(1):174. PubMed ID: 32857219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.
    Harrison RK; Ben-Yakar A
    Opt Express; 2010 Oct; 18(21):22556-71. PubMed ID: 20941153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells.
    Madzharov D; Dewan R; Knipp D
    Opt Express; 2011 Mar; 19 Suppl 2():A95-A107. PubMed ID: 21445224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light transmission and internal scattering in pulsed laser-etched partially-transparent silicon wafers.
    Rohaizar MH; Sepeai S; Surhada N; Ludin NA; Ibrahim MA; Sopian K; Zaidi SH
    Heliyon; 2019 Nov; 5(11):e02790. PubMed ID: 31768436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light trapping in thin-film silicon solar cells with submicron surface texture.
    Dewan R; Marinkovic M; Noriega R; Phadke S; Salleo A; Knipp D
    Opt Express; 2009 Dec; 17(25):23058-65. PubMed ID: 20052232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light trapping efficiency comparison of Si solar cell textures using spectral photoluminescence.
    Barugkin C; Allen T; Chong TK; White TP; Weber KJ; Catchpole KR
    Opt Express; 2015 Apr; 23(7):A391-400. PubMed ID: 25968804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical design considerations of rear-side dielectric for higher efficiency of PERC solar cells.
    Lai D; Tan CS; Ke C; Ho JW; Ang PC; Kam ZM; Aberle AG; Huang Y
    Opt Express; 2019 Jun; 27(12):A758-A765. PubMed ID: 31252852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of pulsed laser ablation in environmentally friendly liquid.
    Luo F; Guan Y; Ong W; Du Z; Ho G; Li F; Sun S; Lim G; Hong M
    Opt Express; 2014 Oct; 22(20):23875-82. PubMed ID: 25321965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-induced breakdown spectrometry of titanium dioxide antireflection coatings in photovoltaic cells.
    Hidalgo M; Martín F; Laserna JJ
    Anal Chem; 1996 Apr; 68(7):1095-100. PubMed ID: 21619139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adjustable fragmentation in laser desorption/ionization from laser-induced silicon microcolumn arrays.
    Chen Y; Vertes A
    Anal Chem; 2006 Aug; 78(16):5835-44. PubMed ID: 16906730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.