These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

592 related articles for article (PubMed ID: 23187677)

  • 1. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20 Suppl 6():A997-1004. PubMed ID: 23187677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of input couplers for efficient silicon thin film solar absorbers.
    Kim SK; Song KD; Park HG
    Opt Express; 2012 Nov; 20(23):A997-1004. PubMed ID: 23326848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays.
    Li C; Xia L; Gao H; Shi R; Sun C; Shi H; Du C
    Opt Express; 2012 Sep; 20 Suppl 5():A589-96. PubMed ID: 23037526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of nanowire optical cavities as efficient photon absorbers.
    Kim SK; Song KD; Kempa TJ; Day RW; Lieber CM; Park HG
    ACS Nano; 2014 Apr; 8(4):3707-14. PubMed ID: 24617563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-trapping design of graphene transparent electrodes for efficient thin-film silicon solar cells.
    Zhao Y; Chen F; Shen Q; Zhang L
    Appl Opt; 2012 Sep; 51(25):6245-51. PubMed ID: 22945173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AuAg Bimetallic Non-Alloyed Nanoparticles on SiO₂ Spacer Layer for Improved Light Absorption in Thin-Film
    Lee SK; Lim HJ; Tan CL; Lee YT
    J Nanosci Nanotechnol; 2018 Mar; 18(3):2117-2120. PubMed ID: 29448725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient optical absorption in thin-film solar cells.
    Yang L; Xuan Y; Tan J
    Opt Express; 2011 Sep; 19 Suppl 5():A1165-74. PubMed ID: 21935260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-wave infrared tunable thin-film perfect absorber utilizing highly doped silicon-on-sapphire.
    Cleary JW; Soref R; Hendrickson JR
    Opt Express; 2013 Aug; 21(16):19363-74. PubMed ID: 23938852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laterally assembled nanowires for ultrathin broadband solar absorbers.
    Song KD; Kempa TJ; Park HG; Kim SK
    Opt Express; 2014 May; 22 Suppl 3():A992-A1000. PubMed ID: 24922405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Omnidirectional and broadband absorption enhancement from trapezoidal Mie resonators in semiconductor metasurfaces.
    Pala RA; Butun S; Aydin K; Atwater HA
    Sci Rep; 2016 Sep; 6():31451. PubMed ID: 27641965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles.
    Nagel JR; Scarpulla MA
    Opt Express; 2010 Jun; 18 Suppl 2():A139-46. PubMed ID: 20588582
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns.
    Bozzola A; Liscidini M; Andreani LC
    Opt Express; 2012 Mar; 20 Suppl 2():A224-44. PubMed ID: 22418672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping.
    Gao T; Stevens E; Lee JK; Leu PW
    Opt Lett; 2014 Aug; 39(16):4647-50. PubMed ID: 25121839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20 Suppl 6():A864-78. PubMed ID: 23187663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells.
    Tsai MA; Han HW; Tsai YL; Tseng PC; Yu P; Kuo HC; Shen CH; Shieh JM; Lin SH
    Opt Express; 2011 Jul; 19 Suppl 4():A757-62. PubMed ID: 21747544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational analysis of thin film InGaAs/GaAs quantum well solar cells with back side light trapping structures.
    McPheeters CO; Yu ET
    Opt Express; 2012 Nov; 20(23):A864-78. PubMed ID: 23326834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-enhanced parabolic nanostructures for broadband absorption in ultra-thin crystalline Si solar cells.
    Pritom YA; Sikder DK; Zaman S; Hossain M
    Nanoscale Adv; 2023 Sep; 5(18):4986-4995. PubMed ID: 37705791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembled hollow nanosphere arrays used as low Q whispering gallery mode resonators on thin film solar cells for light trapping.
    Yin J; Zang Y; Yue C; He X; Li J; Wu Z; Fang Y
    Phys Chem Chem Phys; 2013 Oct; 15(39):16874-82. PubMed ID: 23999602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of light absorption in thin-film silicon with periodic nanohole arrays.
    Yahaya NA; Yamada N; Kotaki Y; Nakayama T
    Opt Express; 2013 Mar; 21(5):5924-30. PubMed ID: 23482160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced photocurrent in thin-film amorphous silicon solar cells via shape controlled three-dimensional nanostructures.
    Hilali MM; Yang S; Miller M; Xu F; Banerjee S; Sreenivasan SV
    Nanotechnology; 2012 Oct; 23(40):405203. PubMed ID: 22997169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.