BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 23187680)

  • 1. A mechanism implicating plastoglobules in thylakoid disassembly during senescence and nitrogen starvation.
    Besagni C; Kessler F
    Planta; 2013 Feb; 237(2):463-70. PubMed ID: 23187680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes.
    Austin JR; Frost E; Vidi PA; Kessler F; Staehelin LA
    Plant Cell; 2006 Jul; 18(7):1693-703. PubMed ID: 16731586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress.
    Espinoza-Corral R; Schwenkert S; Lundquist PK
    Plant J; 2021 Jun; 106(6):1571-1587. PubMed ID: 33783866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of plastoglobules in thylakoid lipid remodeling during plant development.
    Rottet S; Besagni C; Kessler F
    Biochim Biophys Acta; 2015 Sep; 1847(9):889-99. PubMed ID: 25667966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knockdown of FIBRILLIN4 gene expression in apple decreases plastoglobule plastoquinone content.
    Singh DK; Laremore TN; Smith PB; Maximova SN; McNellis TW
    PLoS One; 2012; 7(10):e47547. PubMed ID: 23077632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis, accumulation and emission of carotenoids, alpha-tocopherol, plastoquinone, and isoprene in leaves under high photosynthetic irradiance.
    Lichtenthaler HK
    Photosynth Res; 2007 May; 92(2):163-79. PubMed ID: 17634750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of Plastoglobules for Lipid Analyses.
    Coulon D; Bréhélin C
    Methods Mol Biol; 2021; 2295():321-335. PubMed ID: 34047984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway.
    Lundquist PK; Poliakov A; Giacomelli L; Friso G; Appel M; McQuinn RP; Krasnoff SB; Rowland E; Ponnala L; Sun Q; van Wijk KJ
    Plant Cell; 2013 May; 25(5):1818-39. PubMed ID: 23673981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis.
    Lundquist PK; Poliakov A; Bhuiyan NH; Zybailov B; Sun Q; van Wijk KJ
    Plant Physiol; 2012 Mar; 158(3):1172-92. PubMed ID: 22274653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unexpected roles of plastoglobules (plastid lipid droplets) in vitamin K1 and E metabolism.
    Spicher L; Kessler F
    Curr Opin Plant Biol; 2015 Jun; 25():123-9. PubMed ID: 26037391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prenylquinone profiling in whole leaves and chloroplast subfractions.
    Kessler F; Glauser G
    Methods Mol Biol; 2014; 1153():213-26. PubMed ID: 24777800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastid lipid droplets at the crossroads of prenylquinone metabolism.
    Eugeni Piller L; Abraham M; Dörmann P; Kessler F; Besagni C
    J Exp Bot; 2012 Feb; 63(4):1609-18. PubMed ID: 22371323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More than just lipid balls: quantitative analysis of plastoglobule attributes and their stress-related responses.
    Arzac MI; Fernández-Marín B; García-Plazaola JI
    Planta; 2022 Feb; 255(3):62. PubMed ID: 35141783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plastoglobules: versatile lipoprotein particles in plastids.
    Bréhélin C; Kessler F; van Wijk KJ
    Trends Plant Sci; 2007 Jun; 12(6):260-6. PubMed ID: 17499005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into topology and membrane interaction characteristics of plastoglobule-localized AtFBN1a and AtLOX2.
    Espinoza-Corral R; Herrera-Tequia A; Lundquist PK
    Plant Signal Behav; 2021 Oct; 16(10):1945213. PubMed ID: 34180346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastoglobuli: Plastid Microcompartments with Integrated Functions in Metabolism, Plastid Developmental Transitions, and Environmental Adaptation.
    van Wijk KJ; Kessler F
    Annu Rev Plant Biol; 2017 Apr; 68():253-289. PubMed ID: 28125283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastoglobule lipid bodies: their functions in chloroplasts and their potential for applications.
    Kessler F; Vidi PA
    Adv Biochem Eng Biotechnol; 2007; 107():153-72. PubMed ID: 17522825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters.
    Gaude N; Bréhélin C; Tischendorf G; Kessler F; Dörmann P
    Plant J; 2007 Feb; 49(4):729-39. PubMed ID: 17270009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual targeting of a mature plastoglobulin/fibrillin fusion protein to chloroplast plastoglobules and thylakoids in transplastomic tobacco plants.
    Shanmugabalaji V; Besagni C; Piller LE; Douet V; Ruf S; Bock R; Kessler F
    Plant Mol Biol; 2013 Jan; 81(1-2):13-25. PubMed ID: 23086498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The plastoquinone pool outside the thylakoid membrane serves in plant photoprotection as a reservoir of singlet oxygen scavengers.
    Ksas B; Légeret B; Ferretti U; Chevalier A; Pospíšil P; Alric J; Havaux M
    Plant Cell Environ; 2018 Oct; 41(10):2277-2287. PubMed ID: 29601642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.