BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23187860)

  • 1. Versatile RBC-derived vesicles as nanoparticle vector of photosensitizers for photodynamic therapy.
    Wang LY; Shi XY; Yang CS; Huang DM
    Nanoscale; 2013 Jan; 5(1):416-21. PubMed ID: 23187860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Encapsulation efficacy of natural and synthetic photosensitizers by silica nanoparticles for photodynamic applications.
    Makhadmeh GN; Abdul Aziz A; Abdul Razak K; Abu Noqta O
    IET Nanobiotechnol; 2015 Dec; 9(6):381-5. PubMed ID: 26647815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantum dot-MUC1 aptamer conjugate for targeted delivery of protoporphyrin IX and specific photokilling of cancer cells through ROS generation.
    Singh S; Jha P; Singh V; Sinha K; Hussain S; Singh MK; Das P
    Integr Biol (Camb); 2016 Oct; 8(10):1040-1048. PubMed ID: 27723851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protoporphyrin IX-loaded magnetoliposomes as a potential drug delivery system for photodynamic therapy: Fabrication, characterization and in vitro study.
    Basoglu H; Bilgin MD; Demir MM
    Photodiagnosis Photodyn Ther; 2016 Mar; 13():81-90. PubMed ID: 26751701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colloidal mesoporous silica nanoparticles with protoporphyrin IX encapsulated for photodynamic therapy.
    Qian J; Gharibi A; He S
    J Biomed Opt; 2009; 14(1):014012. PubMed ID: 19256700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of protoporphyrin IX performance in aqueous solutions for photodynamic therapy.
    Homayoni H; Jiang K; Zou X; Hossu M; Rashidi LH; Chen W
    Photodiagnosis Photodyn Ther; 2015 Jun; 12(2):258-66. PubMed ID: 25636780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific light-up pullulan-based nanoparticles with reduction-triggered emission and activatable photoactivity for the imaging and photodynamic killing of cancer cells.
    Xia J; Zhang L; Qian M; Bao Y; Wang J; Li Y
    J Colloid Interface Sci; 2017 Jul; 498():170-181. PubMed ID: 28324723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma membrane activatable polymeric nanotheranostics with self-enhanced light-triggered photosensitizer cellular influx for photodynamic cancer therapy.
    Jia HR; Jiang YW; Zhu YX; Li YH; Wang HY; Han X; Yu ZW; Gu N; Liu P; Chen Z; Wu FG
    J Control Release; 2017 Jun; 255():231-241. PubMed ID: 28442408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy.
    Kojima C; Toi Y; Harada A; Kono K
    Bioconjug Chem; 2007; 18(3):663-70. PubMed ID: 17375896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ratiometric theranostic probe for tumor targeting therapy and self-therapeutic monitoring.
    Li SY; Cheng H; Xie BR; Qiu WX; Song LL; Zhuo RX; Zhang XZ
    Biomaterials; 2016 Oct; 104():297-309. PubMed ID: 27475726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The synthesis of 64Cu-chelated porphyrin photosensitizers and their tumor-targeting peptide conjugates for the evaluation of target cell uptake and PET image-based pharmacokinetics of targeted photodynamic therapy agents.
    Mukai H; Wada Y; Watanabe Y
    Ann Nucl Med; 2013 Aug; 27(7):625-39. PubMed ID: 23605059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and conjugation of Sr
    Homayoni H; Ma L; Zhang J; Sahi SK; Rashidi LH; Bui B; Chen W
    Photodiagnosis Photodyn Ther; 2016 Dec; 16():90-99. PubMed ID: 27594671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization-dependent cell-killing effects of protoporphyrin (PPIX)-lipid micelles and liposomes in photodynamic therapy.
    Tachikawa S; Sato S; Hazama H; Kaneda Y; Awazu K; Nakamura H
    Bioorg Med Chem; 2015 Dec; 23(24):7578-84. PubMed ID: 26602828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of protoporphyrin IX skin delivery for topical photodynamic therapy: Nanodispersions of liquid-crystalline phase as nanocarriers.
    Rossetti FC; Depieri LV; Praça FG; Del Ciampo JO; Fantini MC; Pierre MB; Tedesco AC; Bentley MV
    Eur J Pharm Sci; 2016 Feb; 83():99-108. PubMed ID: 26657201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodynamic therapy of intracranial tissues: a preclinical comparative study of four different photosensitizers.
    Lilge L; Wilson BC
    J Clin Laser Med Surg; 1998 Apr; 16(2):81-91. PubMed ID: 9663099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscopic micelle delivery improves the photophysical properties and efficacy of photodynamic therapy of protoporphyrin IX.
    Ding H; Sumer BD; Kessinger CW; Dong Y; Huang G; Boothman DA; Gao J
    J Control Release; 2011 May; 151(3):271-7. PubMed ID: 21232562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma membrane-anchorable photosensitizing nanomicelles for lipid raft-responsive and light-controllable intracellular drug delivery.
    Jia HR; Zhu YX; Xu KF; Liu X; Wu FG
    J Control Release; 2018 Sep; 286():103-113. PubMed ID: 30026079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulated release of photosensitizers from graft and diblock micelles for photodynamic therapy.
    Tsai HC; Tsai CH; Lin SY; Jhang CR; Chiang YS; Hsiue GH
    Biomaterials; 2012 Feb; 33(6):1827-37. PubMed ID: 22142770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilized tetraether lipids based particles guided prophyrins photodynamic therapy.
    Mahmoud G; Jedelská J; Omar SM; Strehlow B; Schneider M; Bakowsky U
    Drug Deliv; 2018 Nov; 25(1):1526-1536. PubMed ID: 29996694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro investigation of efficient photodynamic therapy using a nonviral vector; hemagglutinating virus of Japan envelope.
    Sakai M; Fujimoto N; Ishii K; Nakamura H; Kaneda Y; Awazu K
    J Biomed Opt; 2012 Jul; 17(7):77009. PubMed ID: 23085849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.