These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 23187950)

  • 1. Direct electrochemical detection and sizing of silver nanoparticles in seawater media.
    Stuart EJ; Rees NV; Cullen JT; Compton RG
    Nanoscale; 2013 Jan; 5(1):174-7. PubMed ID: 23187950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters.
    Chinnapongse SL; MacCuspie RI; Hackley VA
    Sci Total Environ; 2011 May; 409(12):2443-50. PubMed ID: 21481439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Sticky electrodes' for the detection of silver nanoparticles.
    Tschulik K; Palgrave RG; Batchelor-McAuley C; Compton RG
    Nanotechnology; 2013 Jul; 24(29):295502. PubMed ID: 23807154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical detection of Cu2+ through Ag nanoparticle assembly regulated by copper-catalyzed oxidation of cysteamine.
    Cui L; Wu J; Li J; Ge Y; Ju H
    Biosens Bioelectron; 2014 May; 55():272-7. PubMed ID: 24389390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide functionalized with silver@silica-polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin.
    Veerapandian M; Seo YT; Yun K; Lee MH
    Biosens Bioelectron; 2014 Aug; 58():200-4. PubMed ID: 24637169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of silver nanoparticles on a lab-on-chip platform.
    Chua CK; Pumera M
    Electrophoresis; 2013 Jul; 34(14):2007-10. PubMed ID: 23161737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.
    Keller AA; Wang H; Zhou D; Lenihan HS; Cherr G; Cardinale BJ; Miller R; Ji Z
    Environ Sci Technol; 2010 Mar; 44(6):1962-7. PubMed ID: 20151631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing.
    Siddhanta S; Thakur V; Narayana C; Shivaprasad SM
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):5807-12. PubMed ID: 23043483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pilot estuarine mesocosm study on the environmental fate of Silver nanomaterials leached from consumer products.
    Cleveland D; Long SE; Pennington PL; Cooper E; Fulton MH; Scott GI; Brewer T; Davis J; Petersen EJ; Wood L
    Sci Total Environ; 2012 Apr; 421-422():267-72. PubMed ID: 22369864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical determination of inorganic mercury and arsenic--A review.
    Zaib M; Athar MM; Saeed A; Farooq U
    Biosens Bioelectron; 2015 Dec; 74():895-908. PubMed ID: 26253796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-Chip Stochastic Detection of Silver Nanoparticles without a Reference Electrode.
    Figueiredo PG; Grob L; Rinklin P; Krause KJ; Wolfrum B
    ACS Sens; 2018 Jan; 3(1):93-98. PubMed ID: 29276833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical biosensor for estrogenic substance using lipid bilayers modified by Au nanoparticles.
    Xia W; Li Y; Wan Y; Chen T; Wei J; Lin Y; Xu S
    Biosens Bioelectron; 2010 Jun; 25(10):2253-8. PubMed ID: 20353888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical microsensor based on gold nanoparticles modified electrode for total phosphorus determinations in water.
    Bai Y; Tong J; Wang J; Bian C; Xia S
    IET Nanobiotechnol; 2014 Mar; 8(1):31-6. PubMed ID: 24888189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomolar concentrations determination of hydrazine by a modified carbon paste electrode incorporating TiO2 nanoparticles.
    Mazloum-Ardakani M; Taleat Z; Beitollahi H; Naeimi H
    Nanoscale; 2011 Apr; 3(4):1683-9. PubMed ID: 21321783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Release of silver nanoparticles from outdoor facades.
    Kaegi R; Sinnet B; Zuleeg S; Hagendorfer H; Mueller E; Vonbank R; Boller M; Burkhardt M
    Environ Pollut; 2010 Sep; 158(9):2900-5. PubMed ID: 20621404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions.
    MacCuspie RI; Rogers K; Patra M; Suo Z; Allen AJ; Martin MN; Hackley VA
    J Environ Monit; 2011 May; 13(5):1212-26. PubMed ID: 21416095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electrochemical detection of tagged nanoparticles via particle-electrode collisions: nanoelectroanalysis beyond immobilisation.
    Zhou YG; Rees NV; Compton RG
    Chem Commun (Camb); 2012 Mar; 48(19):2510-2. PubMed ID: 22278352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg(2.).
    Xie H; Wang Q; Chai Y; Yuan Y; Yuan R
    Biosens Bioelectron; 2016 Dec; 86():630-635. PubMed ID: 27471153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Self-Assembled Alkanethiol Monolayers on Stochastic Amperometric On-Chip Detection of Silver Nanoparticles.
    Krause KJ; Adly N; Yakushenko A; Schnitker J; Mayer D; Offenhäusser A; Wolfrum B
    Anal Chem; 2016 Apr; 88(7):3632-7. PubMed ID: 26901267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion of nanoparticles in a biofilm.
    Peulen TO; Wilkinson KJ
    Environ Sci Technol; 2011 Apr; 45(8):3367-73. PubMed ID: 21434601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.