These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 23188086)

  • 41. Formation of non-toxic Aβ fibrils by small heat shock protein under heat-stress conditions.
    Sakono M; Utsumi A; Zako T; Abe T; Yohda M; Maeda M
    Biochem Biophys Res Commun; 2013 Jan; 430(4):1259-64. PubMed ID: 23261462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Terminal Regions Confer Plasticity to the Tetrameric Assembly of Human HspB2 and HspB3.
    Clark AR; Vree Egberts W; Kondrat FDL; Hilton GR; Ray NJ; Cole AR; Carver JA; Benesch JLP; Keep NH; Boelens WC; Slingsby C
    J Mol Biol; 2018 Sep; 430(18 Pt B):3297-3310. PubMed ID: 29969581
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The beta4-beta8 groove is an ATP-interactive site in the alpha crystallin core domain of the small heat shock protein, human alphaB crystallin.
    Ghosh JG; Houck SA; Doneanu CE; Clark JI
    J Mol Biol; 2006 Dec; 364(3):364-75. PubMed ID: 17022999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Small heat shock protein alphaB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis.
    Liu S; Li J; Tao Y; Xiao X
    Biochem Biophys Res Commun; 2007 Mar; 354(1):109-14. PubMed ID: 17222797
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1.
    Heirbaut M; Lermyte F; Martin EM; Beelen S; Sobott F; Strelkov SV; Weeks SD
    J Biol Chem; 2017 Jun; 292(24):9944-9957. PubMed ID: 28487364
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insights into the domains required for dimerization and assembly of human alphaB crystallin.
    Ghosh JG; Clark JI
    Protein Sci; 2005 Mar; 14(3):684-95. PubMed ID: 15722445
    [TBL] [Abstract][Full Text] [Related]  

  • 47. HSPB5 engages multiple states of a destabilized client to enhance chaperone activity in a stress-dependent manner.
    Delbecq SP; Klevit RE
    J Biol Chem; 2019 Mar; 294(9):3261-3270. PubMed ID: 30567736
    [TBL] [Abstract][Full Text] [Related]  

  • 48. αB-crystallin, a small heat shock protein, modulates NF-κB activity in a phosphorylation-dependent manner and protects muscle myoblasts from TNF-α induced cytotoxicity.
    Adhikari AS; Singh BN; Rao KS; Rao ChM
    Biochim Biophys Acta; 2011 Aug; 1813(8):1532-42. PubMed ID: 21640763
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Replica exchange molecular dynamics simulations provide insight into substrate recognition by small heat shock proteins.
    Patel S; Vierling E; Tama F
    Biophys J; 2014 Jun; 106(12):2644-55. PubMed ID: 24940782
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Wrapping the alpha-crystallin domain fold in a chaperone assembly.
    Stamler R; Kappé G; Boelens W; Slingsby C
    J Mol Biol; 2005 Oct; 353(1):68-79. PubMed ID: 16165157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A model for small heat shock protein inhibition of polyglutamine aggregation.
    Healy EF; Little C; King PJ
    Cell Biochem Biophys; 2014 Jun; 69(2):275-81. PubMed ID: 24242192
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of mouse small heat shock protein αb-crystallin gene by aryl hydrocarbon receptor.
    Liu S; Piatigorsky J
    PLoS One; 2011 Apr; 6(4):e17904. PubMed ID: 21494593
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network.
    Reinle K; Mogk A; Bukau B
    J Mol Biol; 2022 Jan; 434(1):167157. PubMed ID: 34271010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin.
    Treweek TM; Rekas A; Walker MJ; Carver JA
    Exp Eye Res; 2010 Nov; 91(5):691-9. PubMed ID: 20732317
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The small heat-shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin.
    Kulig M; Ecroyd H
    Biochem J; 2012 Dec; 448(3):343-52. PubMed ID: 23005341
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Detection and architecture of small heat shock protein monomers.
    Poulain P; Gelly JC; Flatters D
    PLoS One; 2010 Apr; 5(4):e9990. PubMed ID: 20383329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client.
    Mainz A; Peschek J; Stavropoulou M; Back KC; Bardiaux B; Asami S; Prade E; Peters C; Weinkauf S; Buchner J; Reif B
    Nat Struct Mol Biol; 2015 Nov; 22(11):898-905. PubMed ID: 26458046
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deletion of (54)FLRAPSWF(61) residues decreases the oligomeric size and enhances the chaperone function of alphaB-crystallin.
    Santhoshkumar P; Murugesan R; Sharma KK
    Biochemistry; 2009 Jun; 48(23):5066-73. PubMed ID: 19388699
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Site-directed mutations within the core "alpha-crystallin" domain of the small heat-shock protein, human alphaB-crystallin, decrease molecular chaperone functions.
    Muchowski PJ; Wu GJ; Liang JJ; Adman ET; Clark JI
    J Mol Biol; 1999 Jun; 289(2):397-411. PubMed ID: 10366513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structures of Xanthomonas small heat shock protein provide a structural basis for an active molecular chaperone oligomer.
    Hilario E; Martin FJ; Bertolini MC; Fan L
    J Mol Biol; 2011 Apr; 408(1):74-86. PubMed ID: 21315085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.