These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 23188175)

  • 1. The red queen in the corn: agricultural weeds as models of rapid adaptive evolution.
    Vigueira CC; Olsen KM; Caicedo AL
    Heredity (Edinb); 2013 Apr; 110(4):303-11. PubMed ID: 23188175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive introgression from maize has facilitated the establishment of teosinte as a noxious weed in Europe.
    Le Corre V; Siol M; Vigouroux Y; Tenaillon MI; Délye C
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25618-25627. PubMed ID: 32989136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic Clues for Crop-Weed Interactions and Evolution.
    Guo L; Qiu J; Li LF; Lu B; Olsen K; Fan L
    Trends Plant Sci; 2018 Dec; 23(12):1102-1115. PubMed ID: 30293809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agricultural weeds: the contribution of domesticated species to the origin and evolution of feral weeds.
    Vercellino RB; Hernández F; Pandolfo C; Ureta S; Presotto A
    Pest Manag Sci; 2023 Mar; 79(3):922-934. PubMed ID: 36507604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malaysian weedy rice shows its true stripes: wild Oryza and elite rice cultivars shape agricultural weed evolution in Southeast Asia.
    Song BK; Chuah TS; Tam SM; Olsen KM
    Mol Ecol; 2014 Oct; 23(20):5003-17. PubMed ID: 25231087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. All roads lead to weediness: Patterns of genomic divergence reveal extensive recurrent weedy rice origins from South Asian Oryza.
    Huang Z; Young ND; Reagon M; Hyma KE; Olsen KM; Jia Y; Caicedo AL
    Mol Ecol; 2017 Jun; 26(12):3151-3167. PubMed ID: 28345200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybridization in agricultural weeds: A review from ecological, evolutionary, and management perspectives.
    Westbrook AS; DiTommaso A
    Am J Bot; 2023 Dec; 110(12):e16258. PubMed ID: 38031455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current state of herbicides in herbicide-resistant crops.
    Green JM
    Pest Manag Sci; 2014 Sep; 70(9):1351-7. PubMed ID: 24446395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Into the weeds: new insights in plant stress.
    Sharma G; Barney JN; Westwood JH; Haak DC
    Trends Plant Sci; 2021 Oct; 26(10):1050-1060. PubMed ID: 34238685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Varying Weed Densities Alter the Corn Transcriptome, Highlighting a Core Set of Weed-Induced Genes and Processes with Potential for Manipulating Weed Tolerance.
    Horvath DP; Clay SA; Bruggeman SA; Anderson JV; Chao WS; Yeater K
    Plant Genome; 2019 Nov; 12(3):1-9. PubMed ID: 33016588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population genetics and origin of the native North American agricultural weed waterhemp (Amaranthus tuberculatus; Amaranthaceae).
    Waselkov KE; Olsen KM
    Am J Bot; 2014 Oct; 101(10):1726-36. PubMed ID: 25091000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introgression and selection shaping the genome and adaptive loci of weedy rice in northern China.
    Sun J; Qian Q; Ma DR; Xu ZJ; Liu D; Du HB; Chen WF
    New Phytol; 2013 Jan; 197(1):290-299. PubMed ID: 23106357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to escape from crop-to-weed gene flow: phenological variation and isolation-by-time within weedy sunflower populations.
    Roumet M; Noilhan C; Latreille M; David J; Muller MH
    New Phytol; 2013 Jan; 197(2):642-654. PubMed ID: 23181709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signatures of adaptation in the weedy rice genome.
    Li LF; Li YL; Jia Y; Caicedo AL; Olsen KM
    Nat Genet; 2017 May; 49(5):811-814. PubMed ID: 28369039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weed biology and management in the multi-omics era: Progress and perspectives.
    Chen K; Yang H; Wu D; Peng Y; Lian L; Bai L; Wang L
    Plant Commun; 2024 Apr; 5(4):100816. PubMed ID: 38219012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defenses Against ROS in Crops and Weeds: The Effects of Interference and Herbicides.
    Caverzan A; Piasecki C; Chavarria G; Stewart CN; Vargas L
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30832379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cumulative impact of GM herbicide-tolerant cropping on arable plants assessed through species-based and functional taxonomies.
    Squire GR; Hawes C; Begg GS; Young MW
    Environ Sci Pollut Res Int; 2009 Jan; 16(1):85-94. PubMed ID: 19048321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.
    Colbach N; Darmency H; Fernier A; Granger S; Le Corre V; Messéan A
    Environ Sci Pollut Res Int; 2017 May; 24(14):13121-13135. PubMed ID: 28386883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The evolution of flowering strategies in US weedy rice.
    Thurber CS; Reagon M; Olsen KM; Jia Y; Caicedo AL
    Am J Bot; 2014 Oct; 101(10):1737-47. PubMed ID: 25326616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated pest management and weed management in the United States and Canada.
    Owen MD; Beckie HJ; Leeson JY; Norsworthy JK; Steckel LE
    Pest Manag Sci; 2015 Mar; 71(3):357-76. PubMed ID: 25346235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.