BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 2318818)

  • 41. Controlling the regiospecificity and coupling of cytochrome P450cam: T185F mutant increases coupling and abolishes 3-hydroxynorcamphor product.
    Paulsen MD; Filipovic D; Sligar SG; Ornstein RL
    Protein Sci; 1993 Mar; 2(3):357-65. PubMed ID: 8453374
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structure of cytochrome P-450cam complexed with the (1S)-camphor enantiomer.
    Schlichting I; Jung C; Schulze H
    FEBS Lett; 1997 Oct; 415(3):253-7. PubMed ID: 9357977
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A three-dimensional molecular template for substrates of human cytochrome P450 involved in debrisoquine 4-hydroxylation.
    Islam SA; Wolf CR; Lennard MS; Sternberg MJ
    Carcinogenesis; 1991 Dec; 12(12):2211-9. PubMed ID: 1747920
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The P450cam G248E mutant covalently binds its prosthetic heme group.
    Limburg J; LeBrun LA; Ortiz de Montellano PR
    Biochemistry; 2005 Mar; 44(10):4091-9. PubMed ID: 15751986
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A critical role of protein-bound water in the catalytic cycle of cytochrome P-450 camphor.
    Di Primo C; Sligar SG; Hoa GH; Douzou P
    FEBS Lett; 1992 Nov; 312(2-3):252-4. PubMed ID: 1426259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-pressure flash photolysis study of hemoprotein: effects of substrate analogues on the recombination of carbon monoxide to cytochrome P450CAM.
    Unno M; Ishimori K; Ishimura Y; Morishima I
    Biochemistry; 1994 Aug; 33(32):9762-8. PubMed ID: 8068655
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NMR studies of substrate binding to cytochrome P450 BM3: comparisons to cytochrome P450 cam.
    Modi S; Primrose WU; Boyle JM; Gibson CF; Lian LY; Roberts GC
    Biochemistry; 1995 Jul; 34(28):8982-8. PubMed ID: 7619797
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Active-site mobility inhibits reductive dehalogenation of 1,1,1-trichloroethane by cytochrome P450cam.
    Paulsen MD; Ornstein RL
    J Comput Aided Mol Des; 1994 Aug; 8(4):389-404. PubMed ID: 7815091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The proton activity at cryogenic temperatures--a possible influence on the spin state of the heme iron of cytochrome P-450cam in supercooled buffered solutions.
    Schulze H; Ristau O; Jung C
    Biochim Biophys Acta; 1994 Jan; 1183(3):491-8. PubMed ID: 8286397
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Substrate interactions in cytochrome P-450: correlation between carbon-13 nuclear magnetic resonance chemical shifts and C-O vibrational frequencies.
    Legrand N; Bondon A; Simonneaux G; Jung C; Gill E
    FEBS Lett; 1995 May; 364(2):152-6. PubMed ID: 7750560
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The active site of cytochrome P-450 nifedipine oxidase: a model-building study.
    Ferenczy GG; Morris GM
    J Mol Graph; 1989 Dec; 7(4):206-11. PubMed ID: 2486822
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A single mutation in cytochrome P450 BM3 induces the conformational rearrangement seen upon substrate binding in the wild-type enzyme.
    Joyce MG; Girvan HM; Munro AW; Leys D
    J Biol Chem; 2004 May; 279(22):23287-93. PubMed ID: 15020590
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oxygen activation and electron transfer in flavocytochrome P450 BM3.
    Ost TW; Clark J; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK; Daff S
    J Am Chem Soc; 2003 Dec; 125(49):15010-20. PubMed ID: 14653735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of cytochrome b5 association reactions. Characterization of metmyoglobin and cytochrome P-450cam binding to genetically engineered cytochromeb5.
    Stayton PS; Fisher MT; Sligar SG
    J Biol Chem; 1988 Sep; 263(27):13544-8. PubMed ID: 3417673
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural and electronic characterization of heme moiety in oxygenated hemoproteins by using XANES spectroscopy.
    Shiro Y; Makino R; Sato F; Oyanagi H; Matsushita T; Ishimura Y; Iizuka T
    Biochim Biophys Acta; 1991 Dec; 1115(2):101-7. PubMed ID: 1764462
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A role for Asp-251 in cytochrome P-450cam oxygen activation.
    Gerber NC; Sligar SG
    J Biol Chem; 1994 Feb; 269(6):4260-6. PubMed ID: 8307990
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring second coordination sphere effects in nitric oxide synthase.
    McQuarters AB; Speelman AL; Chen L; Elmore BO; Fan W; Feng C; Lehnert N
    J Biol Inorg Chem; 2016 Dec; 21(8):997-1008. PubMed ID: 27686338
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of hydrogen-bonds in drug binding.
    Wade RC; Goodford PJ
    Prog Clin Biol Res; 1989; 289():433-44. PubMed ID: 2726808
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Autooxidation and hydroxylation reactions of oxygenated cytochrome P-450cam.
    Lipscomb JD; Sligar SG; Namtvedt MJ; Gunsalus IC
    J Biol Chem; 1976 Feb; 251(4):1116-24. PubMed ID: 2601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.