These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 23188358)
41. Coupling of gap plasmons in multi-wire waveguides. Manjavacas A; García de Abajo FJ Opt Express; 2009 Oct; 17(22):19401-13. PubMed ID: 19997160 [TBL] [Abstract][Full Text] [Related]
42. Enhanced optical transmission through sub-wavelength centered-polygonal hole arrays in silver thin film on silica substrate. Arabi HE; Park M; Pournoury M; Oh K Opt Express; 2011 Apr; 19(9):8514-25. PubMed ID: 21643101 [TBL] [Abstract][Full Text] [Related]
43. Phase sensitive sensor on plasmonic nanograting structures. Maisonneuve M; Kelly Od; Blanchard-Dionne AP; Patskovsky S; Meunier M Opt Express; 2011 Dec; 19(27):26318-24. PubMed ID: 22274216 [TBL] [Abstract][Full Text] [Related]
45. Extraordinary terahertz transmission in superconducting subwavelength hole array. Wu J; Dai H; Wang H; Jin B; Jia T; Zhang C; Cao C; Chen J; Kang L; Xu W; Wu P Opt Express; 2011 Jan; 19(2):1101-6. PubMed ID: 21263649 [TBL] [Abstract][Full Text] [Related]
46. Electromagnetically induced transparency in hybrid plasmonic-dielectric system. Tang B; Dai L; Jiang C Opt Express; 2011 Jan; 19(2):628-37. PubMed ID: 21263602 [TBL] [Abstract][Full Text] [Related]
47. The transmission characteristics of surface plasmon polaritons in ring resonator. Wang TB; Wen XW; Yin CP; Wang HZ Opt Express; 2009 Dec; 17(26):24096-101. PubMed ID: 20052121 [TBL] [Abstract][Full Text] [Related]
48. Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation. Wang D; Yang T; Crozier KB Opt Express; 2011 Jan; 19(3):2148-57. PubMed ID: 21369032 [TBL] [Abstract][Full Text] [Related]
49. Diffractive slit patterns for focusing surface plasmon polaritons. Kim H; Lee B Opt Express; 2008 Jun; 16(12):8969-80. PubMed ID: 18545608 [TBL] [Abstract][Full Text] [Related]
50. Surface wave sensors based on nanometric layers of strongly absorbing materials. Zhang Y; Arnold C; Offermans P; Gómez Rivas J Opt Express; 2012 Apr; 20(9):9431-41. PubMed ID: 22535033 [TBL] [Abstract][Full Text] [Related]
51. Dual-wavelength band spectroscopic optical frequency domain imaging using plasmon-resonant scattering in metallic nanoparticles. Kim TS; Jang SJ; Oh N; Kim Y; Park T; Park J; Oh WY Opt Lett; 2014 May; 39(10):3082-5. PubMed ID: 24978279 [TBL] [Abstract][Full Text] [Related]
52. Flexible transformation plasmonics using graphene. Lu WB; Zhu W; Xu HJ; Ni ZH; Dong ZG; Cui TJ Opt Express; 2013 May; 21(9):10475-82. PubMed ID: 23669904 [TBL] [Abstract][Full Text] [Related]
53. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Ropers C; Neacsu CC; Elsaesser T; Albrecht M; Raschke MB; Lienau C Nano Lett; 2007 Sep; 7(9):2784-8. PubMed ID: 17685661 [TBL] [Abstract][Full Text] [Related]
54. Resonant cavities based on Parity-Time-symmetric diffractive gratings. Kulishov M; Kress B; Slavík R Opt Express; 2013 Apr; 21(8):9473-83. PubMed ID: 23609658 [TBL] [Abstract][Full Text] [Related]
55. Plasmonic-dielectric compound grating with high group-index and transmission. Dai L; Liu Y; Jiang C Opt Express; 2011 Jan; 19(2):1461-9. PubMed ID: 21263688 [TBL] [Abstract][Full Text] [Related]
56. Shaping single emitter emission with metallic hole arrays: strong focusing of dipolar radiation. Moerland RJ; Eguiluz L; Kaivola M Opt Express; 2013 Feb; 21(4):4578-90. PubMed ID: 23481991 [TBL] [Abstract][Full Text] [Related]