BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2319014)

  • 1. Bulbospinal serotoninergic pathways in the frog Rana pipiens.
    Tan HJ; Miletic V
    J Comp Neurol; 1990 Feb; 292(2):291-302. PubMed ID: 2319014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The serotoninergic bulbospinal system and brainstem-spinal cord content of serotonin-, TRH-, and substance P-like immunoreactivity in the aged rat with special reference to the spinal cord motor nucleus.
    Johnson H; Ulfhake B; Dagerlind A; Bennett GW; Fone KC; Hökfelt T
    Synapse; 1993 Sep; 15(1):63-89. PubMed ID: 7508641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serotoninergic and nonserotoninergic neurons in the medullary raphe system have axon collateral projections to autonomic and somatic cell groups in the medulla and spinal cord.
    Allen GV; Cechetto DF
    J Comp Neurol; 1994 Dec; 350(3):357-66. PubMed ID: 7533797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunohistochemistry and spinal projections of the reticular formation in the northern leopard frog, Rana pipiens.
    Adli DS; Stuesse SL; Cruce WL
    J Comp Neurol; 1999 Feb; 404(3):387-407. PubMed ID: 9952355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The descending and intrinsic serotoninergic innervation of an elasmobranch spinal cord.
    Ritchie TC; Roos LJ; Williams BJ; Leonard RB
    J Comp Neurol; 1984 Apr; 224(3):395-406. PubMed ID: 6715586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origins and terminations of bulbospinal axons that contain serotonin and either enkephalin or substance-P in the North American opossum.
    Reddy VK; Cassini P; Ho RH; Martin GF
    J Comp Neurol; 1990 Apr; 294(1):96-108. PubMed ID: 1691216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic principles in the spinal projections of serotonergic and non-serotonergic brainstem neurons in the rat.
    Skagerberg G; Björklund A
    Neuroscience; 1985 Jun; 15(2):445-80. PubMed ID: 4022334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain stem origins of spinal projections in the lizard Tupinambis nigropunctatus.
    Cruce WL; Newman DB
    J Comp Neurol; 1981 May; 198(2):185-207. PubMed ID: 7240441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat.
    Holstege G
    J Comp Neurol; 1987 Jun; 260(1):98-126. PubMed ID: 3496365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Termination patterns of serotoninergic medullary raphespinal fibers in the rat lumbar spinal cord: an anterograde immunohistochemical study.
    Jones SL; Light AR
    J Comp Neurol; 1990 Jul; 297(2):267-82. PubMed ID: 2370323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotoninergic projections from the raphe nuclei to the preoptic area in sheep as revealed by immunohistochemistry and retrograde labeling.
    Tillet Y
    J Comp Neurol; 1992 Jun; 320(2):267-72. PubMed ID: 1619053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of two separate descending noradrenergic pathways to the rat spinal cord: evidence for an intragriseal trajectory of locus coeruleus axons in the superficial layers of the dorsal horn.
    Fritschy JM; Grzanna R
    J Comp Neurol; 1990 Jan; 291(4):553-82. PubMed ID: 2329191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal ascending pathways in amphibians: cells of origin and main targets.
    Muñoz A; Muñoz M; González A; ten Donkelaar HJ
    J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Central innervation of the rat ependyma and subcommissural organ with special reference to ascending serotoninergic projections from the raphe nuclei.
    Mikkelsen JD; Hay-Schmidt A; Larsen PJ
    J Comp Neurol; 1997 Aug; 384(4):556-68. PubMed ID: 9259489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raphe-spinal neurons display an age-dependent differential capacity for neurite outgrowth compared to other brainstem-spinal populations.
    Borisoff JF; Pataky DM; McBride CB; Steeves JD
    Exp Neurol; 2000 Nov; 166(1):16-28. PubMed ID: 11031080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal development of brainstem serotonin-containing neurons projecting to lumbar spinal cord in rats.
    Tanaka H; Amamiya S; Miura N; Araki A; Ohinata J; Fujieda K
    Brain Dev; 2006 Oct; 28(9):586-91. PubMed ID: 16730936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calbindin-D28k immunoreactivity in the spinal cord of Xenopus laevis and its participation in ascending and descending projections.
    Morona R; Moreno N; López JM; Muñoz M; Ten Donkelaar HJ; González A
    Brain Res Bull; 2005 Sep; 66(4-6):550-4. PubMed ID: 16144648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prefrontal afferents to the dorsal raphe nucleus in the rat.
    Gonçalves L; Nogueira MI; Shammah-Lagnado SJ; Metzger M
    Brain Res Bull; 2009 Mar; 78(4-5):240-7. PubMed ID: 19103268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization within the cranial IX-X complex in ranid frogs: a horseradish peroxidase transport study.
    Stuesse SL; Cruce WL; Powell KS
    J Comp Neurol; 1984 Jan; 222(3):358-65. PubMed ID: 6607937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrograde study of hypocretin-1 (orexin-A) projections to subdivisions of the dorsal raphe nucleus in the rat.
    Lee HS; Park SH; Song WC; Waterhouse BD
    Brain Res; 2005 Oct; 1059(1):35-45. PubMed ID: 16153616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.