BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23190495)

  • 1. Calcium signatures are decoded by plants to give specific gene responses.
    Whalley HJ; Knight MR
    New Phytol; 2013 Feb; 197(3):690-693. PubMed ID: 23190495
    [No Abstract]   [Full Text] [Related]  

  • 2. Calcium signatures and signaling events orchestrate plant-microbe interactions.
    Yuan P; Jauregui E; Du L; Tanaka K; Poovaiah BW
    Curr Opin Plant Biol; 2017 Aug; 38():173-183. PubMed ID: 28692858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional changes in response to growth of Arabidopsis in high external calcium.
    Chan CW; Wohlbach DJ; Rodesch MJ; Sussman MR
    FEBS Lett; 2008 Mar; 582(6):967-76. PubMed ID: 18307990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining modelling and experimental approaches to explain how calcium signatures are decoded by calmodulin-binding transcription activators (CAMTAs) to produce specific gene expression responses.
    Liu J; Whalley HJ; Knight MR
    New Phytol; 2015 Oct; 208(1):174-87. PubMed ID: 25917109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A stress-specific calcium signature regulating an ozone-responsive gene expression network in Arabidopsis.
    Short EF; North KA; Roberts MR; Hetherington AM; Shirras AD; McAinsh MR
    Plant J; 2012 Sep; 71(6):948-61. PubMed ID: 22563867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic analysis reveals calcium regulation of specific promoter motifs in Arabidopsis.
    Whalley HJ; Sargeant AW; Steele JF; Lacoere T; Lamb R; Saunders NJ; Knight H; Knight MR
    Plant Cell; 2011 Nov; 23(11):4079-95. PubMed ID: 22086087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium decoding mechanisms in plants.
    Hashimoto K; Kudla J
    Biochimie; 2011 Dec; 93(12):2054-9. PubMed ID: 21658427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to Botrytis infection.
    AbuQamar S; Chen X; Dhawan R; Bluhm B; Salmeron J; Lam S; Dietrich RA; Mengiste T
    Plant J; 2006 Oct; 48(1):28-44. PubMed ID: 16925600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting plant immunity gene expression by identifying the decoding mechanism of calcium signatures.
    Lenzoni G; Liu J; Knight MR
    New Phytol; 2018 Mar; 217(4):1598-1609. PubMed ID: 29218709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of starch metabolism in Arabidopsis leaves.
    Grennan AK
    Plant Physiol; 2006 Dec; 142(4):1343-5. PubMed ID: 17151136
    [No Abstract]   [Full Text] [Related]  

  • 11. Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis.
    Van Hoewyk D; Takahashi H; Inoue E; Hess A; Tamaoki M; Pilon-Smits EA
    Physiol Plant; 2008 Feb; 132(2):236-53. PubMed ID: 18251864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MYB30 transcription factor regulates oxidative and heat stress responses through ANNEXIN-mediated cytosolic calcium signaling in Arabidopsis.
    Liao C; Zheng Y; Guo Y
    New Phytol; 2017 Oct; 216(1):163-177. PubMed ID: 28726305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca2+-programmed stomatal closure.
    Cho D; Kim SA; Murata Y; Lee S; Jae SK; Nam HG; Kwak JM
    Plant J; 2009 May; 58(3):437-49. PubMed ID: 19143998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respective contribution of CML8 and CML9, two arabidopsis calmodulin-like proteins, to plant stress responses.
    Zhu X; Perez M; Aldon D; Galaud JP
    Plant Signal Behav; 2017 May; 12(5):e1322246. PubMed ID: 28471263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endosome-associated CRT1 functions early in resistance gene-mediated defense signaling in Arabidopsis and tobacco.
    Kang HG; Oh CS; Sato M; Katagiri F; Glazebrook J; Takahashi H; Kachroo P; Martin GB; Klessig DF
    Plant Cell; 2010 Mar; 22(3):918-36. PubMed ID: 20332379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The calcium sensor CBL1 integrates plant responses to abiotic stresses.
    Albrecht V; Weinl S; Blazevic D; D'Angelo C; Batistic O; Kolukisaoglu U; Bock R; Schulz B; Harter K; Kudla J
    Plant J; 2003 Nov; 36(4):457-70. PubMed ID: 14617077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis.
    Ko JH; Yang SH; Han KH
    Plant J; 2006 Aug; 47(3):343-55. PubMed ID: 16792696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring plant responses to aphid feeding using a full Arabidopsis microarray reveals a small number of genes with significantly altered expression.
    Couldridge C; Newbury HJ; Ford-Lloyd B; Bale J; Pritchard J
    Bull Entomol Res; 2007 Oct; 97(5):523-32. PubMed ID: 17916270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7(ARR7) overexpression in cytokinin response.
    Lee DJ; Park JY; Ku SJ; Ha YM; Kim S; Kim MD; Oh MH; Kim J
    Mol Genet Genomics; 2007 Feb; 277(2):115-37. PubMed ID: 17061125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development.
    Frei dit Frey N; Mbengue M; Kwaaitaal M; Nitsch L; Altenbach D; Häweker H; Lozano-Duran R; Njo MF; Beeckman T; Huettel B; Borst JW; Panstruga R; Robatzek S
    Plant Physiol; 2012 Jun; 159(2):798-809. PubMed ID: 22535420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.