BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23190556)

  • 1. Perlite filtration of phenolic compounds from cigarette smoke.
    Rostami-Charati F; Robati GM; Naghizadeh F; Hosseini S; Chaichi MJ
    Comb Chem High Throughput Screen; 2013 Jan; 16(1):73-7. PubMed ID: 23190556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation and quantitation of phenolic compounds in mainstream cigarette smoke by capillary gas chromatography with mass spectrometry in the selected-ion mode.
    Nanni EJ; Lovette ME; Hicks RD; Fowler KW; Borgerding MF
    J Chromatogr; 1990 May; 505(2):365-74. PubMed ID: 2355067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated determination of seven phenolic compounds in mainstream tobacco smoke.
    Vaughan C; Stanfill SB; Polzin GM; Ashley DL; Watson CH
    Nicotine Tob Res; 2008 Jul; 10(7):1261-8. PubMed ID: 18629737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenolic compounds in particles of mainstream waterpipe smoke.
    Sepetdjian E; Abdul Halim R; Salman R; Jaroudi E; Shihadeh A; Saliba NA
    Nicotine Tob Res; 2013 Jun; 15(6):1107-12. PubMed ID: 23178319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rapid and selective method for simultaneous determination of six toxic phenolic compounds in mainstream cigarette smoke using single-drop microextraction followed by liquid chromatography-tandem mass spectrometry.
    Saha S; Mistri R; Ray BC
    Anal Bioanal Chem; 2013 Nov; 405(28):9265-72. PubMed ID: 24057026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-performance liquid chromatographic determination of major phenolic compounds in tobacco smoke.
    Risner CH; Cash SL
    J Chromatogr Sci; 1990 May; 28(5):239-44. PubMed ID: 2283385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new look at radicals in cigarette smoke.
    Bartalis J; Chan WG; Wooten JB
    Anal Chem; 2007 Jul; 79(13):5103-6. PubMed ID: 17530742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removals of cryptosporidium parvum oocysts and cryptosporidium-sized polystyrene microspheres from swimming pool water by diatomaceous earth filtration and perlite-sand filtration.
    Lu P; Amburgey JE; Hill VR; Murphy JL; Schneeberger CL; Arrowood MJ; Yuan T
    J Water Health; 2017 Jun; 15(3):374-384. PubMed ID: 28598342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gas chromatography/mass spectrometry versus liquid chromatography/fluorescence detection in the analysis of phenols in mainstream cigarette smoke.
    Moldoveanu SC; Kiser M
    J Chromatogr A; 2007 Feb; 1141(1):90-7. PubMed ID: 17182049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General synthesis of carbon nanocages and their adsorption of toxic compounds from cigarette smoke.
    Li G; Yu H; Xu L; Ma Q; Chen C; Hao Q; Qian Y
    Nanoscale; 2011 Aug; 3(8):3251-7. PubMed ID: 21766100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecularly imprinted polymers on a silica surface for the adsorption of tobacco-specific nitrosamines in mainstream cigarette smoke.
    Li MT; Zhu YY; Li L; Wang WN; Yin YG; Zhu QH
    J Sep Sci; 2015 Jul; 38(14):2551-7. PubMed ID: 25914259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of phenyl group-functionalized magnetic mesoporous silica microspheres for fast extraction and analysis of acetaldehyde in mainstream cigarette smoke by gas chromatography-mass spectrometry.
    Huang D; Sha Y; Zheng S; Liu B; Deng C
    Talanta; 2013 Oct; 115():427-34. PubMed ID: 24054614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA solution(R) in cigarette filters reduces polycyclic aromatic hydrocarbon (PAH) levels in mainstream tobacco smoke.
    Lodovici M; Akpan V; Caldini S; Akanju B; Dolara P
    Food Chem Toxicol; 2007 Sep; 45(9):1752-6. PubMed ID: 17459554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cu retention in an acid soil amended with perlite winery waste.
    Rodríguez-Salgado I; Pérez-Rodríguez P; Gómez-Armesto A; Nóvoa-Muñoz JC; Arias-Estévez M; Fernández-Calviño D
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3789-98. PubMed ID: 26498818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cigarette butts as a source of phenolic compounds for the environment.
    Fojtíková P; Troup J; Merta D; Klementová Š
    Environ Sci Pollut Res Int; 2024 Jun; 31(30):43138-43151. PubMed ID: 38890250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of CTAB onto perlite samples from aqueous solutions.
    Alkan M; Karadaş M; Doğan M; Demirbaş O
    J Colloid Interface Sci; 2005 Nov; 291(2):309-18. PubMed ID: 16023129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of seven compounds in mainstream cigarette smoke by ultra performance liquid chromatography using a beta-cyclodextrin mobile phase additive].
    Li Z; Tang G; Pang Y; Jiang X; Chen Z; Hu Q
    Se Pu; 2010 Aug; 28(8):790-4. PubMed ID: 21261049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of thorium from aqueous solutions by perlite.
    Talip Z; Eral M; Hiçsönmez U
    J Environ Radioact; 2009 Feb; 100(2):139-43. PubMed ID: 19022540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of aromatic amines in cigarette smoke.
    Stabbert R; Schäfer KH; Biefel C; Rustemeier K
    Rapid Commun Mass Spectrom; 2003; 17(18):2125-32. PubMed ID: 12955743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of nicotine, tar, volatile organic compounds and carbonyls in mainstream cigarette smoke using a glass filter and a sorbent cartridge followed by the two-phase/one-pot elution method with carbon disulfide and methanol.
    Uchiyama S; Hayashida H; Izu R; Inaba Y; Nakagome H; Kunugita N
    J Chromatogr A; 2015 Dec; 1426():48-55. PubMed ID: 26653840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.