These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 23190643)
1. Dual-specificity phosphatases 2: surprising positive effect at the molecular level and a potential biomarker of diseases. Wei W; Jiao Y; Postlethwaite A; Stuart JM; Wang Y; Sun D; Gu W Genes Immun; 2013 Jan; 14(1):1-6. PubMed ID: 23190643 [TBL] [Abstract][Full Text] [Related]
2. The family-wide structure and function of human dual-specificity protein phosphatases. Jeong DG; Wei CH; Ku B; Jeon TJ; Chien PN; Kim JK; Park SY; Hwang HS; Ryu SY; Park H; Kim DS; Kim SJ; Ryu SE Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):421-35. PubMed ID: 24531476 [TBL] [Abstract][Full Text] [Related]
3. The dual specificity phosphatase transcriptome of the murine thymus. Tanzola MB; Kersh GJ Mol Immunol; 2006 Feb; 43(6):754-62. PubMed ID: 16360020 [TBL] [Abstract][Full Text] [Related]
4. Dual specificity phosphatases: a gene family for control of MAP kinase function. Camps M; Nichols A; Arkinstall S FASEB J; 2000 Jan; 14(1):6-16. PubMed ID: 10627275 [TBL] [Abstract][Full Text] [Related]
5. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Ríos P; Nunes-Xavier CE; Tabernero L; Köhn M; Pulido R Antioxid Redox Signal; 2014 May; 20(14):2251-73. PubMed ID: 24206177 [TBL] [Abstract][Full Text] [Related]
7. Dual-Specificity Phosphatases in Neuroblastoma Cell Growth and Differentiation. Nunes-Xavier CE; Zaldumbide L; Aurtenetxe O; López-Almaraz R; López JI; Pulido R Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30866462 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization of the low-molecular-mass phosphotyrosine-protein phosphatase of Acinetobacter johnsonii. Grangeasse C; Doublet P; Vincent C; Vaganay E; Riberty M; Duclos B; Cozzone AJ J Mol Biol; 1998 May; 278(2):339-47. PubMed ID: 9571056 [TBL] [Abstract][Full Text] [Related]
9. Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Givant-Horwitz V; Davidson B; Reich R Cancer Res; 2004 May; 64(10):3572-9. PubMed ID: 15150114 [TBL] [Abstract][Full Text] [Related]
10. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Jeffrey KL; Brummer T; Rolph MS; Liu SM; Callejas NA; Grumont RJ; Gillieron C; Mackay F; Grey S; Camps M; Rommel C; Gerondakis SD; Mackay CR Nat Immunol; 2006 Mar; 7(3):274-83. PubMed ID: 16474395 [TBL] [Abstract][Full Text] [Related]
12. Genomic organization and chromosomal localization of the DUSP2 gene, encoding a MAP kinase phosphatase, to human 2p11.2-q11. Yi H; Morton CC; Weremowicz S; McBride OW; Kelly K Genomics; 1995 Jul; 28(1):92-6. PubMed ID: 7590752 [TBL] [Abstract][Full Text] [Related]
13. Molecular cloning and characterization of a novel dual-specificity phosphatase 23 gene from human fetal brain. Wu Q; Li Y; Gu S; Li N; Zheng D; Li D; Zheng Z; Ji C; Xie Y; Mao Y Int J Biochem Cell Biol; 2004 Aug; 36(8):1542-53. PubMed ID: 15147733 [TBL] [Abstract][Full Text] [Related]
14. The human CL100 gene encodes a Tyr/Thr-protein phosphatase which potently and specifically inactivates MAP kinase and suppresses its activation by oncogenic ras in Xenopus oocyte extracts. Alessi DR; Smythe C; Keyse SM Oncogene; 1993 Jul; 8(7):2015-20. PubMed ID: 8390041 [TBL] [Abstract][Full Text] [Related]