These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Identification of a novel cyanobacterial group as active diazotrophs in a coastal microbial mat using NanoSIMS analysis. Woebken D; Burow LC; Prufert-Bebout L; Bebout BM; Hoehler TM; Pett-Ridge J; Spormann AM; Weber PK; Singer SW ISME J; 2012 Jul; 6(7):1427-39. PubMed ID: 22237543 [TBL] [Abstract][Full Text] [Related]
4. Cyanobacterial reuse of extracellular organic carbon in microbial mats. Stuart RK; Mayali X; Lee JZ; Craig Everroad R; Hwang M; Bebout BM; Weber PK; Pett-Ridge J; Thelen MP ISME J; 2016 May; 10(5):1240-51. PubMed ID: 26495994 [TBL] [Abstract][Full Text] [Related]
5. Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park. Bennett AC; Murugapiran SK; Hamilton TL Environ Microbiol Rep; 2020 Oct; 12(5):503-513. PubMed ID: 32613733 [TBL] [Abstract][Full Text] [Related]
6. Abundance and diversity of aerobic heterotrophic microorganisms and their interaction with cyanobacteria in the oxic layer of an intertidal hypersaline cyanobacterial mat. Abed RMM; Kohls K; Leloup J; de Beer D FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29267956 [TBL] [Abstract][Full Text] [Related]
7. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats. Lee JZ; Burow LC; Woebken D; Everroad RC; Kubo MD; Spormann AM; Weber PK; Pett-Ridge J; Bebout BM; Hoehler TM Front Microbiol; 2014; 5():61. PubMed ID: 24616716 [TBL] [Abstract][Full Text] [Related]
8. Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Roeselers G; Norris TB; Castenholz RW; Rysgaard S; Glud RN; Kühl M; Muyzer G Environ Microbiol; 2007 Jan; 9(1):26-38. PubMed ID: 17227409 [TBL] [Abstract][Full Text] [Related]
9. Metagenomics reveals niche partitioning within the phototrophic zone of a microbial mat. Lee JZ; Everroad RC; Karaoz U; Detweiler AM; Pett-Ridge J; Weber PK; Prufert-Bebout L; Bebout BM PLoS One; 2018; 13(9):e0202792. PubMed ID: 30204767 [TBL] [Abstract][Full Text] [Related]
10. Metatranscriptomic analyses of chlorophototrophs of a hot-spring microbial mat. Liu Z; Klatt CG; Wood JM; Rusch DB; Ludwig M; Wittekindt N; Tomsho LP; Schuster SC; Ward DM; Bryant DA ISME J; 2011 Aug; 5(8):1279-90. PubMed ID: 21697962 [TBL] [Abstract][Full Text] [Related]
11. Impacts of microbial assemblage and environmental conditions on the distribution of anatoxin-a producing cyanobacteria within a river network. Bouma-Gregson K; Olm MR; Probst AJ; Anantharaman K; Power ME; Banfield JF ISME J; 2019 Jun; 13(6):1618-1634. PubMed ID: 30809011 [TBL] [Abstract][Full Text] [Related]
12. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Wong HL; Smith DL; Visscher PT; Burns BP Sci Rep; 2015 Oct; 5():15607. PubMed ID: 26499760 [TBL] [Abstract][Full Text] [Related]
13. Tools providing new insight into coastal anoxygenic purple bacterial mats: review and perspectives. Hubas C; Jesus B; Passarelli C; Jeanthon C Res Microbiol; 2011 Nov; 162(9):858-68. PubMed ID: 21530653 [TBL] [Abstract][Full Text] [Related]
14. Soil CO2 flux and photoautotrophic community composition in high-elevation, 'barren' soil. Freeman KR; Pescador MY; Reed SC; Costello EK; Robeson MS; Schmidt SK Environ Microbiol; 2009 Mar; 11(3):674-86. PubMed ID: 19187281 [TBL] [Abstract][Full Text] [Related]
15. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Ley RE; Harris JK; Wilcox J; Spear JR; Miller SR; Bebout BM; Maresca JA; Bryant DA; Sogin ML; Pace NR Appl Environ Microbiol; 2006 May; 72(5):3685-95. PubMed ID: 16672518 [TBL] [Abstract][Full Text] [Related]
16. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. Klatt CG; Liu Z; Ludwig M; Kühl M; Jensen SI; Bryant DA; Ward DM ISME J; 2013 Sep; 7(9):1775-89. PubMed ID: 23575369 [TBL] [Abstract][Full Text] [Related]
17. Bioinformatic, phylogenetic and chemical analysis of the UV-absorbing compounds scytonemin and mycosporine-like amino acids from the microbial mat communities of Shark Bay, Australia. D'Agostino PM; Woodhouse JN; Liew HT; Sehnal L; Pickford R; Wong HL; Burns BP; Neilan BA Environ Microbiol; 2019 Feb; 21(2):702-715. PubMed ID: 30589201 [TBL] [Abstract][Full Text] [Related]
18. Metagenomic analysis of intertidal hypersaline microbial mats from Elkhorn Slough, California, grown with and without molybdate. D'haeseleer P; Lee JZ; Prufert-Bebout L; Burow LC; Detweiler AM; Weber PK; Karaoz U; Brodie EL; Glavina Del Rio T; Tringe SG; Bebout BM; Pett-Ridge J Stand Genomic Sci; 2017; 12():67. PubMed ID: 29167704 [TBL] [Abstract][Full Text] [Related]
19. Mineralogical and microbial characterization of alkali hot spring microbial mats and deposits in Pong Dueat Pa Pae hot spring, Northern Thailand. Sriaporn C; Komonjinda S; Awiphan S; Santitharangkun S; Banjongprasert C; Osathanunkul M; Ramsiri B Extremophiles; 2024 Jun; 28(2):29. PubMed ID: 38900286 [TBL] [Abstract][Full Text] [Related]
20. Quantifying potential N turnover rates in hypersaline microbial mats by Coban O; Rasigraf O; de Jong AEE; Spott O; Bebout BM Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33579680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]