BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 2319204)

  • 41. Mitochondrial transmembrane potential is diminished in phorbol myristate acetate-stimulated peritoneal resident macrophages isolated from wild-type mice, but not in those from gp91-phox-deficient mice.
    Kobayashi T; Ogawa Y; Watanabe Y; Furuya M; Kataoka S; Garcia del Saz E; Tsunawaki S; Dinauer MC; Seguchi H
    Histochem Cell Biol; 2004 Oct; 122(4):323-32. PubMed ID: 15243751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrogen peroxide increases the availability of arachidonic acid for oxidative metabolism by inhibiting acylation into phospholipids in the alveolar macrophage.
    Sporn PH; Marshall TM; Peters-Golden M
    Am J Respir Cell Mol Biol; 1992 Sep; 7(3):307-16. PubMed ID: 1520493
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oxygen metabolism of human colostral macrophages: comparison with monocytes and polymorphonuclear leukocytes.
    Tsuda H; Takeshige K; Shibata Y; Minakami S
    J Biochem; 1984 May; 95(5):1237-45. PubMed ID: 6086600
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2',7'-dichlorofluorescein (DCF), 2',7'-dichlorodihydrofluorescein (DCFH) and 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) in the lipid bilayer.
    Afri M; Frimer AA; Cohen Y
    Chem Phys Lipids; 2004 Aug; 131(1):123-33. PubMed ID: 15210370
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Particle opsonization and lung macrophage cytokine response. In vitro and in vivo analysis.
    Kobzik L; Huang S; Paulauskis JD; Godleski JJ
    J Immunol; 1993 Sep; 151(5):2753-9. PubMed ID: 8360489
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mitochondrial membrane potential and hydroethidine-monitored superoxide generation in cultured cerebellar granule cells.
    Budd SL; Castilho RF; Nicholls DG
    FEBS Lett; 1997 Sep; 415(1):21-4. PubMed ID: 9326361
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flow cytometric study of oxidative burst activity in bovine neutrophils.
    Salgar SK; Paape MJ; Alston-Mills B; Miller RH
    Am J Vet Res; 1991 Aug; 52(8):1201-7. PubMed ID: 1928900
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxidative metabolic responses of rabbit pulmonary alveolar macrophages.
    Boxer LA; Ismail G; Allen JM; Baehner RL
    Blood; 1979 Mar; 53(3):486-91. PubMed ID: 760863
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Receptor-mediated O2- release by alveolar macrophages and peripheral blood monocytes from smokers and nonsmokers. Priming and triggering effects of monomeric IgG, concanavalin A, N-formyl-methionyl-leucyl-phenylalanine, phorbol myristate acetate, and cytochalasin D.
    Nakashima H; Ando M; Sugimoto M; Suga M; Soda K; Araki S
    Am Rev Respir Dis; 1987 Aug; 136(2):310-5. PubMed ID: 3039878
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simultaneous flow cytometric method to measure phagocytosis and oxidative products by neutrophils.
    Perticarari S; Presani G; Mangiarotti MA; Banfi E
    Cytometry; 1991; 12(7):687-93. PubMed ID: 1782835
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pulmonary surfactant phospholipids modulate priming of rabbit alveolar macrophages for oxidative responses.
    Hayakawa H; Giridhar G; Myrvik QN; Kucera L
    J Leukoc Biol; 1992 Apr; 51(4):379-85. PubMed ID: 1564401
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flow cytometric analysis of cell suspensions exposed to shock waves in the presence of the radical sensitive dye hydroethidine.
    Endl E; Steinbach P; Hofstädter F
    Ultrasound Med Biol; 1995; 21(4):569-77. PubMed ID: 7571150
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The use of acetylated cytochrome c in detecting superoxide anion production in rabbit alveolar macrophages.
    Nasrallah VN; Shirley PS; Myrvik Q; Waite M
    J Immunol; 1983 Nov; 131(5):2104-6. PubMed ID: 6313802
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intracellular oxidation of hydroethidine: compartmentalization and cytotoxicity of oxidation products.
    Lyublinskaya OG; Zenin VV; Shatrova AN; Aksenov ND; Zemelko VI; Domnina AP; Litanyuk AP; Burova EB; Gubarev SS; Negulyaev YA; Nikolsky NN
    Free Radic Biol Med; 2014 Oct; 75():60-8. PubMed ID: 25035077
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The intracellular oxidation of 2',7'-dichlorofluorescin in murine T lymphocytes.
    van Reyk DM; King NJ; Dinauer MC; Hunt NH
    Free Radic Biol Med; 2001 Jan; 30(1):82-8. PubMed ID: 11134898
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional defects in phagocytic cells following thermal injury. Application of flow cytometric analysis.
    Duque RE; Phan SH; Hudson JL; Till GO; Ward PA
    Am J Pathol; 1985 Jan; 118(1):116-27. PubMed ID: 2981471
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stimulation of the hexose monophosphate shunt independent of hydrogen peroxide and superoxide production in rabbit alveolar macrophages during phagocytosis.
    Tsan MF
    Blood; 1977 Nov; 50(5):935-45. PubMed ID: 198047
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Inhibition of mitochondrial superoxide generation in rat alveolar macrophages by 12-O-tetradecanoylphorbol-13-acetate: potential role of protein kinase C.
    Rembish SJ; Yang Y; Trush MA
    Res Commun Mol Pathol Pharmacol; 1994 Aug; 85(2):115-29. PubMed ID: 7994556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Subpopulations of neutrophils with increased oxidative product formation in blood of patients with infection.
    Bass DA; Olbrantz P; Szejda P; Seeds MC; McCall CE
    J Immunol; 1986 Feb; 136(3):860-6. PubMed ID: 3001188
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mast cell granules modulate alveolar macrophage respiratory-burst activity and eicosanoid metabolism.
    Rock MJ; Despot J; Lemanske RF
    J Allergy Clin Immunol; 1990 Oct; 86(4 Pt 1):452-61. PubMed ID: 2172347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.