BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 23192270)

  • 1. Altered energy metabolism in cancer: a unique opportunity for therapeutic intervention.
    Zhang Y; Yang JM
    Cancer Biol Ther; 2013 Feb; 14(2):81-9. PubMed ID: 23192270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.
    El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F
    Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural Products and Derivatives Targeting at Cancer Energy Metabolism: A Potential Treatment Strategy.
    Wang QQ; Li MX; Li C; Gu XX; Zheng MZ; Chen LX; Li H
    Curr Med Sci; 2020 Apr; 40(2):205-217. PubMed ID: 32337682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic alterations in cancer cells and therapeutic implications.
    Hammoudi N; Ahmed KB; Garcia-Prieto C; Huang P
    Chin J Cancer; 2011 Aug; 30(8):508-25. PubMed ID: 21801600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.
    Amoedo ND; Obre E; Rossignol R
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative phosphorylation as a target to arrest malignant neoplasias.
    Rodríguez-Enríquez S; Gallardo-Pérez JC; Marín-Hernández A; Aguilar-Ponce JL; Mandujano-Tinoco EA; Meneses A; Moreno-Sánchez R
    Curr Med Chem; 2011; 18(21):3156-67. PubMed ID: 21671858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the Mitochondrial Metabolic Network: A Promising Strategy in Cancer Treatment.
    Frattaruolo L; Brindisi M; Curcio R; Marra F; Dolce V; Cappello AR
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Pathways: Targeting Cellular Energy Metabolism in Cancer via Inhibition of SLC2A1 and LDHA.
    Ooi AT; Gomperts BN
    Clin Cancer Res; 2015 Jun; 21(11):2440-4. PubMed ID: 25838393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered glutamine metabolism and therapeutic opportunities for lung cancer.
    Mohamed A; Deng X; Khuri FR; Owonikoko TK
    Clin Lung Cancer; 2014 Jan; 15(1):7-15. PubMed ID: 24377741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondria Targeting as an Effective Strategy for Cancer Therapy.
    Ghosh P; Vidal C; Dey S; Zhang L
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32397535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy.
    Ashton TM; McKenna WG; Kunz-Schughart LA; Higgins GS
    Clin Cancer Res; 2018 Jun; 24(11):2482-2490. PubMed ID: 29420223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer.
    Avolio R; Matassa DS; Criscuolo D; Landriscina M; Esposito F
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31947673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harnessing impaired energy metabolism in cancer cell: small molecule- mediated ways to regulate tumorigenesis.
    Govardhan KS; Ramyasri K; Kethora D; Ravishekar Y; Prasenjit M
    Anticancer Agents Med Chem; 2011 Mar; 11(3):272-9. PubMed ID: 21434854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The emerging role of targeting cancer metabolism for cancer therapy.
    Farhadi P; Yarani R; Dokaneheifard S; Mansouri K
    Tumour Biol; 2020 Oct; 42(10):1010428320965284. PubMed ID: 33028168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting metabolic dependencies in pediatric cancer.
    Issaq SH; Heske CM
    Curr Opin Pediatr; 2020 Feb; 32(1):26-34. PubMed ID: 31789976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caveolin-1 in the regulation of cell metabolism: a cancer perspective.
    Nwosu ZC; Ebert MP; Dooley S; Meyer C
    Mol Cancer; 2016 Nov; 15(1):71. PubMed ID: 27852311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial substrates in cancer: drivers or passengers?
    Kruspig B; Zhivotovsky B; Gogvadze V
    Mitochondrion; 2014 Nov; 19 Pt A():8-19. PubMed ID: 25179741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transfer in "parasitic" cancer metabolism: mitochondria are the powerhouse and Achilles' heel of tumor cells.
    Martinez-Outschoorn UE; Pestell RG; Howell A; Tykocinski ML; Nagajyothi F; Machado FS; Tanowitz HB; Sotgia F; Lisanti MP
    Cell Cycle; 2011 Dec; 10(24):4208-16. PubMed ID: 22033146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells.
    Ippolito L; Marini A; Cavallini L; Morandi A; Pietrovito L; Pintus G; Giannoni E; Schrader T; Puhr M; Chiarugi P; Taddei ML
    Oncotarget; 2016 Sep; 7(38):61890-61904. PubMed ID: 27542265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.