These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23192329)

  • 41. An Immersed Interface Method for Discrete Surfaces.
    Kolahdouz EM; Bhalla APS; Craven BA; Griffith BE
    J Comput Phys; 2020 Jan; 400():. PubMed ID: 31802781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains.
    Nash RW; Carver HB; Bernabeu MO; Hetherington J; Groen D; Krüger T; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023303. PubMed ID: 25353601
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inter-patient variations in flow boundary conditions at middle cerebral artery from 7T PC-MRI and influence on Computational Fluid Dynamics of intracranial aneurysms.
    Rajabzadeh-Oghaz H; van Ooij P; Veeturi SS; Tutino VM; Zwanenburg JJ; Meng H
    Comput Biol Med; 2020 May; 120():103759. PubMed ID: 32421656
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Laboratory tests for strength paramaters of brain aneurysms.
    Tóth BK; Nasztanovics F; Bojtár I
    Acta Bioeng Biomech; 2007; 9(2):3-7. PubMed ID: 18421937
    [TBL] [Abstract][Full Text] [Related]  

  • 45. On the Lagrangian-Eulerian Coupling in the Immersed Finite Element/Difference Method.
    Lee JH; Griffith BE
    J Comput Phys; 2022 May; 457():. PubMed ID: 35300097
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Basic Principles of Hemodynamics and Cerebral Aneurysms.
    Munarriz PM; Gómez PA; Paredes I; Castaño-Leon AM; Cepeda S; Lagares A
    World Neurosurg; 2016 Apr; 88():311-319. PubMed ID: 26805691
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
    Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H
    J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tetrahedral vs. polyhedral mesh size evaluation on flow velocity and wall shear stress for cerebral hemodynamic simulation.
    Spiegel M; Redel T; Zhang YJ; Struffert T; Hornegger J; Grossman RG; Doerfler A; Karmonik C
    Comput Methods Biomech Biomed Engin; 2011; 14(1):9-22. PubMed ID: 21161794
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Highly Automated Computational Method for Modeling of Intracranial Aneurysm Hemodynamics.
    Seo JH; Eslami P; Caplan J; Tamargo RJ; Mittal R
    Front Physiol; 2018; 9():681. PubMed ID: 29946264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The critical role of hemodynamics in the development of cerebral vascular disease.
    Nixon AM; Gunel M; Sumpio BE
    J Neurosurg; 2010 Jun; 112(6):1240-53. PubMed ID: 19943737
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computation of hemodynamics in the circle of Willis.
    Alnaes MS; Isaksen J; Mardal KA; Romner B; Morgan MK; Ingebrigtsen T
    Stroke; 2007 Sep; 38(9):2500-5. PubMed ID: 17673714
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sensitivity of patient-specific numerical simulation of cerebal aneurysm hemodynamics to inflow boundary conditions.
    Venugopal P; Valentino D; Schmitt H; Villablanca JP; Viñuela F; Duckwiler G
    J Neurosurg; 2007 Jun; 106(6):1051-60. PubMed ID: 17564178
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Hemodynamic analyses of large intracranial aneurysms].
    Wu J; Liu A; Fu C; Zhao Y; Qian Z; Kang H; Peng T; Wu Z
    Zhonghua Yi Xue Za Zhi; 2014 Jul; 94(25):1921-4. PubMed ID: 25253001
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.
    Ge L; Sotiropoulos F
    J Comput Phys; 2007 Aug; 225(2):1782-1809. PubMed ID: 19194533
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Saccular aneurysms on straight and curved vessels are subject to different hemodynamics: implications of intravascular stenting.
    Meng H; Wang Z; Kim M; Ecker RD; Hopkins LN
    AJNR Am J Neuroradiol; 2006 Oct; 27(9):1861-5. PubMed ID: 17032857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tetrahedral and polyhedral mesh evaluation for cerebral hemodynamic simulation--a comparison.
    Spiegel M; Redel T; Zhang Y; Struffert T; Hornegger J; Grossman RG; Doerfler A; Karmonik C
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2787-90. PubMed ID: 19964600
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Finite element methods in the simulation and analysis of intracranial blood flow.
    Foutrakis GN; Yonas H; Sclabassi RJ
    Neurol Res; 1997 Apr; 19(2):174-86. PubMed ID: 9175148
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of aneurysm and ICA morphology on hemodynamics before and after flow diverter treatment.
    Larrabide I; Geers AJ; Morales HG; Aguilar ML; Rüfenacht DA
    J Neurointerv Surg; 2015 Apr; 7(4):272-80. PubMed ID: 24692666
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Effects of flow diverter with low porosity on cerebral aneurysms: a numerical stimulative study].
    Huang QH; Yang PF; Zhang X; Shi Y; Shao XM; Liu JM
    Zhonghua Yi Xue Za Zhi; 2010 Apr; 90(15):1024-7. PubMed ID: 20646519
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics--preliminary experience.
    Karmonik C; Klucznik R; Benndorf G
    Rofo; 2008 Mar; 180(3):209-15. PubMed ID: 18278729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.