These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 2319238)

  • 1. Mechanisms involved in activity-dependent synapse formation in mammalian central nervous system cell cultures.
    Nelson PG; Fields RD; Yu C; Neale EA
    J Neurobiol; 1990 Jan; 21(1):138-56. PubMed ID: 2319238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synapse elimination from the mouse neuromuscular junction in vitro: a non-Hebbian activity-dependent process.
    Nelson PG; Fields RD; Yu C; Liu Y
    J Neurobiol; 1993 Nov; 24(11):1517-30. PubMed ID: 8283186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of neural activity in synaptic development and its implications for adult brain function.
    Aamodt SM; Constantine-Paton M
    Adv Neurol; 1999; 79():133-44. PubMed ID: 10514810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-homeostatic synaptic plasticity of glycine receptor function after chronic strychnine in developing cultured mouse spinal neurons.
    Carrasco MA; Castro PA; Sepulveda FJ; Cuevas M; Tapia JC; Izaurieta P; van Zundert B; Aguayo LG
    J Neurochem; 2007 Mar; 100(5):1143-54. PubMed ID: 17217420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium, network activity, and the role of NMDA channels in synaptic plasticity in vitro.
    Fields RD; Yu C; Nelson PG
    J Neurosci; 1991 Jan; 11(1):134-46. PubMed ID: 1702460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro formation and activity-dependent plasticity of synapses between Helix neurons involved in the neural control of feeding and withdrawal behaviors.
    Fiumara F; Leitinger G; Milanese C; Montarolo PG; Ghirardi M
    Neuroscience; 2005; 134(4):1133-51. PubMed ID: 16054762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre- and postsynaptic mechanisms in Hebbian activity-dependent synapse modification.
    Li MX; Jia M; Yang LX; Dunlap V; Nelson PG
    J Neurobiol; 2002 Sep; 52(3):241-50. PubMed ID: 12210107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic function in cultures of mouse spinal cord neurons.
    Wang FZ; Nelson PG; Fitzgerald SC; Hersh LB; Neale EA
    J Neurosci Res; 1990 Mar; 25(3):312-23. PubMed ID: 2325157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical period for activity-dependent elimination of corticospinal synapses in vitro.
    Ohno T; Sakurai M
    Neuroscience; 2005; 132(4):917-22. PubMed ID: 15857697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-dependent maturation of excitatory synaptic connections in solitary neuron cultures of mouse neocortex.
    Takada N; Yanagawa Y; Komatsu Y
    Eur J Neurosci; 2005 Jan; 21(2):422-30. PubMed ID: 15673441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Schwann cells and astrocytes induce synapse formation by spinal motor neurons in culture.
    Ullian EM; Harris BT; Wu A; Chan JR; Barres BA
    Mol Cell Neurosci; 2004 Feb; 25(2):241-51. PubMed ID: 15019941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A; Jüngling K; Gottmann K
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones.
    MacDermott AB; Mayer ML; Westbrook GL; Smith SJ; Barker JL
    Nature; 1986 May 29-Jun 4; 321(6069):519-22. PubMed ID: 3012362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Converging evidence for a simplified biophysical model of synaptic plasticity.
    Shouval HZ; Castellani GC; Blais BS; Yeung LC; Cooper LN
    Biol Cybern; 2002 Dec; 87(5-6):383-91. PubMed ID: 12461628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscarinic acetylcholine receptors and voltage-gated calcium channels contribute to bidirectional synaptic plasticity at CA1-subiculum synapses.
    Shor OL; Fidzinski P; Behr J
    Neurosci Lett; 2009 Jan; 449(3):220-3. PubMed ID: 19010390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-induced changes of spine morphology.
    Nikonenko I; Jourdain P; Alberi S; Toni N; Muller D
    Hippocampus; 2002; 12(5):585-91. PubMed ID: 12440574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons.
    Burrone J; O'Byrne M; Murthy VN
    Nature; 2002 Nov; 420(6914):414-8. PubMed ID: 12459783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective modulation of Ca(2+) influx pathways by 5-HT regulates synaptic long-term plasticity in the hippocampus.
    Normann C; Clark K
    Brain Res; 2005 Mar; 1037(1-2):187-93. PubMed ID: 15777768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons.
    Hu R; Cai WQ; Wu XG; Yang Z
    Neuroscience; 2007 Feb; 144(4):1229-40. PubMed ID: 17184929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of synaptic plasticity through chronically reduced Ca2+ flux during uncorrelated activity.
    Slutsky I; Sadeghpour S; Li B; Liu G
    Neuron; 2004 Dec; 44(5):835-49. PubMed ID: 15572114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.