BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 23192482)

  • 1. Toward detection and localization of instruments in minimally invasive surgery.
    Allan M; Ourselin S; Thompson S; Hawkes DJ; Kelly J; Stoyanov D
    IEEE Trans Biomed Eng; 2013 Apr; 60(4):1050-8. PubMed ID: 23192482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endoscopic vision-based tracking of multiple surgical instruments during robot-assisted surgery.
    Ryu J; Choi J; Kim HC
    Artif Organs; 2013 Jan; 37(1):107-12. PubMed ID: 23043484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated approach to endoscopic instrument tracking for augmented reality applications in surgical simulation training.
    Loukas C; Lahanas V; Georgiou E
    Int J Med Robot; 2013 Dec; 9(4):e34-51. PubMed ID: 23355307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze-contingent control for minimally invasive robotic surgery.
    Mylonas GP; Darzi A; Yang GZ
    Comput Aided Surg; 2006 Sep; 11(5):256-66. PubMed ID: 17127651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robotic arm enhancement to accommodate improved efficiency and decreased resource utilization in complex minimally invasive surgical procedures.
    Geis WP; Kim HC; Brennan EJ; McAfee PC; Wang Y
    Stud Health Technol Inform; 1996; 29():471-81. PubMed ID: 10172847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long Term Safety Area Tracking (LT-SAT) with online failure detection and recovery for robotic minimally invasive surgery.
    Penza V; Du X; Stoyanov D; Forgione A; Mattos LS; De Momi E
    Med Image Anal; 2018 Apr; 45():13-23. PubMed ID: 29329053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using simulation to design control strategies for robotic no-scar surgery.
    De Donno A; Nageotte F; Zanne P; Goffin L; de Mathelin M
    Stud Health Technol Inform; 2013; 184():117-21. PubMed ID: 23400142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated instrument tracking in robotically assisted laparoscopic surgery.
    Uecker DR; Lee C; Wang YF; Wang Y
    J Image Guid Surg; 1995; 1(6):308-25. PubMed ID: 9080352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The implementation of an integrated computer-assisted system for minimally invasive cardiac surgery.
    Cai J; Luo Z; Gu L; Xu R; Zhao Q
    Int J Med Robot; 2010 Mar; 6(1):102-12. PubMed ID: 20112280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic mitral valve surgery.
    Kypson AP; Nifong LW; Chitwood WR
    Surg Clin North Am; 2003 Dec; 83(6):1387-403. PubMed ID: 14712874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robotic surgery, telerobotic surgery, telepresence, and telementoring. Review of early clinical results.
    Ballantyne GH
    Surg Endosc; 2002 Oct; 16(10):1389-402. PubMed ID: 12140630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of actuated and sensor integrated forceps for minimally invasive robotic surger.
    Kuebler B; Seibold U; Hirzinger G
    Int J Med Robot; 2005 Sep; 1(3):96-107. PubMed ID: 17518396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tele-surgery simulation with a patient organ model for robotic surgery training.
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Konishi K; Kakeji Y; Hashizume M
    Int J Med Robot; 2005 Dec; 1(4):80-8. PubMed ID: 17518408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of a 3D surface from video that is robust to missing data and outliers: application to minimally invasive surgery using stereo and mono endoscopes.
    Hu M; Penney G; Figl M; Edwards P; Bello F; Casula R; Rueckert D; Hawkes D
    Med Image Anal; 2012 Apr; 16(3):597-611. PubMed ID: 21195656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer guidance system for single-incision bimanual robotic surgery.
    Carbone M; Turini G; Petroni G; Niccolini M; Menciassi A; Ferrari M; Mosca F; Ferrari V
    Comput Aided Surg; 2012; 17(4):161-71. PubMed ID: 22687053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards robotic heart surgery: introduction of autonomous procedures into an experimental surgical telemanipulator system.
    Bauernschmitt R; Schirmbeck EU; Knoll A; Mayer H; Nagy I; Wessel N; Wildhirt SM; Lange R
    Int J Med Robot; 2005 Sep; 1(3):74-9. PubMed ID: 17518393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and preliminary in vivo validation of a robotic laparoscope holder for minimally invasive surgery.
    Herman B; Dehez B; Duy KT; Raucent B; Dombre E; Krut S
    Int J Med Robot; 2009 Sep; 5(3):319-26. PubMed ID: 19455594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking endoscopic instruments without a localizer: a shape-analysis-based approach.
    Tonet O; Thoranaghatte RU; Megali G; Dario P
    Comput Aided Surg; 2007 Jan; 12(1):35-42. PubMed ID: 17364657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Totally minimally invasive robot-assisted unstented pyeloplasty using the Zeus Microwrist Surgical System: an animal study.
    Lorincz A; Knight CG; Kant AJ; Langenburg SE; Rabah R; Gidell K; Dawe E; Klein MD; McLorie G
    J Pediatr Surg; 2005 Feb; 40(2):418-22. PubMed ID: 15750940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.