These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23192811)

  • 1. Analytical modeling of a sandwiched plate piezoelectric transformer-based acoustic-electric transmission channel.
    Lawry TJ; Wilt KR; Scarton HA; Saulnier GJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2476-86. PubMed ID: 23192811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer.
    Sammoura F; Kim SG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):990-8. PubMed ID: 22622984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of piezoelectric transducers with combined pseudospectral and finite-difference methods.
    Filoux E; Callé S; Certon D; Lethiecq M; Levassort F
    J Acoust Soc Am; 2008 Jun; 123(6):4165-73. PubMed ID: 18537368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-element ultrasonic transducer modeling using a hybrid FD-PSTD method.
    Filoux E; Levassort F; Callé S; Certon D; Lethiecq M
    Ultrasonics; 2009 Dec; 49(8):611-4. PubMed ID: 19625065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A perturbation method for finite element modeling of piezoelectric vibrations in quartz plate resonators.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):551-62. PubMed ID: 18263220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of 1D analytical model and 3D finite element analysis with experiments for a rosen-type piezoelectric transformer.
    Boukazouha F; Poulin-Vittrant G; Tran-Huu-Hue LP; Bavencoffe M; Boubenider F; Rguiti M; Lethiecq M
    Ultrasonics; 2015 Jul; 60():41-50. PubMed ID: 25753623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic wave transmission through piezoelectric structured materials.
    Lam M; Le Clézio E; Amorín H; Algueró M; Holc J; Kosec M; Hladky-Hennion AC; Feuillard G
    Ultrasonics; 2009 May; 49(4-5):424-31. PubMed ID: 19128815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges.
    Kierkegaard A; Boij S; Efraimsson G
    J Acoust Soc Am; 2010 Feb; 127(2):710-9. PubMed ID: 20136193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of piezoelectric devices by two- and three-dimensional finite elements.
    Lerch R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(3):233-47. PubMed ID: 18285037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of a gradient of material properties on ultrasonic wave propagation in cortical bone: application to axial transmission.
    Haïat G; Naili S; Grimal Q; Talmant M; Desceliers C; Soize C
    J Acoust Soc Am; 2009 Jun; 125(6):4043-52. PubMed ID: 19507985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.
    VanGordon JA; Kovaleski SD; Norgard P; Gall BB; Dale GE
    Rev Sci Instrum; 2014 Feb; 85(2):023101. PubMed ID: 24593343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of bulk acoustic wave devices built on piezoelectric stack structures: impedance matrix analysis and network representation.
    Zhang VY; Dubus B; Lefebvre JE; Gryba T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):704-16. PubMed ID: 18407860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling NDT piezoelectric ultrasonic transmitters.
    San Emeterio JL; Ramos A; Sanz PT; Ruíz A; Azbaid A
    Ultrasonics; 2004 Apr; 42(1-9):277-81. PubMed ID: 15047298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional analysis of the effect of an electrode layer on surface acoustic waves in a finite anisotropic plate.
    Wang J; Du J; Li Z; Lin J
    Ultrasonics; 2006 Dec; 44 Suppl 1():e935-9. PubMed ID: 16814834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-wave analysis of piezoelectric boundary waves propagating along metallic grating sandwiched between two semi-infinite layers.
    Wang Y; Hashimoto KY; Omori T; Yamaguchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):806-11. PubMed ID: 19406709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel modeling technique for the stator of traveling wave ultrasonic motors.
    Pons JL; Rodríguez H; Ceres R; Calderón L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1429-35. PubMed ID: 14682626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of functionally graded piezoelectric ultrasonic transducers.
    Rubio WM; Buiochi F; Adamowski JC; Silva EC
    Ultrasonics; 2009 May; 49(4-5):484-94. PubMed ID: 19230947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy trapping in power transmission through an elastic plate by finite piezoelectric transducers.
    Yang Z; Yang J; Hu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2493-501. PubMed ID: 19049929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional hybrid model for predicting air-coupled generation of guided waves in composite material plates.
    Masmoudi M; Castaings M
    Ultrasonics; 2012 Jan; 52(1):81-92. PubMed ID: 21782203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative modeling of the transduction of electromagnetic acoustic transducers operating on ferromagnetic media.
    Ribichini R; Cegla F; Nagy PB; Cawley P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2808-17. PubMed ID: 21156376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.