These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 23192818)
1. Effects of porous materials in an insert earphone on its frequency response--experiments and simulations. Tsai YT; Shiah YC; Huang JH IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2537-47. PubMed ID: 23192818 [TBL] [Abstract][Full Text] [Related]
2. Insert earphone modeling and measurement by IEC-60711 coupler. Huang CH; Pawar S; Hong ZJ; Huang J IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Feb; 58(2):461-9. PubMed ID: 21342831 [TBL] [Abstract][Full Text] [Related]
3. Acoustic methods for measuring the porosities of porous materials incorporating dead-end pores. Dupont T; Leclaire P; Panneton R J Acoust Soc Am; 2013 Apr; 133(4):2136-45. PubMed ID: 23556583 [TBL] [Abstract][Full Text] [Related]
4. Vibroacoustic response sensitivity due to relative alignment of two anisotropic poro-elastic layers. Lind Nordgren E; Göransson P; Deü JF; Dazel O J Acoust Soc Am; 2013 May; 133(5):EL426-30. PubMed ID: 23656104 [TBL] [Abstract][Full Text] [Related]
5. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels. Zhang B; Chen T; Zhao Y; Zhang W; Zhu J J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873 [TBL] [Abstract][Full Text] [Related]
6. Quantifying the through-thickness asymmetry of sound absorbing porous materials. Salissou Y; Panneton R J Acoust Soc Am; 2008 Aug; 124(2):EL28-33. PubMed ID: 18681498 [TBL] [Abstract][Full Text] [Related]
8. A method to measure hearing aid directivity index and polar pattern in small and reverberant enclosures. Wu YH; Bentler RA Int J Audiol; 2011 Jun; 50(6):405-16. PubMed ID: 21309640 [TBL] [Abstract][Full Text] [Related]
9. Hearing aid coupler output level variability and coupler correction levels for insert earphones. Frank T; Richards WD Ear Hear; 1991 Jun; 12(3):221-7. PubMed ID: 1916048 [TBL] [Abstract][Full Text] [Related]
10. Equivalent hearing threshold levels for the RadioEar IP30 insert earphone and short-term stimuli: comparison of peak-equivalent and RMS-based measures. Fedtke T; Bug MU Int J Audiol; 2020 May; 59(5):398-402. PubMed ID: 31657255 [No Abstract] [Full Text] [Related]
11. The influence of RECD transducer when deriving real-ear sound pressure level. Munro KJ; Millward KE Ear Hear; 2006 Aug; 27(4):409-23. PubMed ID: 16825890 [TBL] [Abstract][Full Text] [Related]
12. Design of an acoustic metamaterial lens using genetic algorithms. Li D; Zigoneanu L; Popa BI; Cummer SA J Acoust Soc Am; 2012 Oct; 132(4):2823-33. PubMed ID: 23039548 [TBL] [Abstract][Full Text] [Related]
13. Large scale modulation of high frequency acoustic waves in periodic porous media. Boutin C; Rallu A; Hans S J Acoust Soc Am; 2012 Dec; 132(6):3622-36. PubMed ID: 23231095 [TBL] [Abstract][Full Text] [Related]
14. An alternative Biot's formulation for dissipative porous media with skeleton deformation. Bécot FX; Jaouen L J Acoust Soc Am; 2013 Dec; 134(6):4801. PubMed ID: 25669292 [TBL] [Abstract][Full Text] [Related]
15. Sound pressure in insert earphone couplers and real ears. Burkhard MD; Sachs RM J Speech Hear Res; 1977 Dec; 20(4):799-807. PubMed ID: 604691 [TBL] [Abstract][Full Text] [Related]
16. Single-sensor multispeaker listening with acoustic metamaterials. Xie Y; Tsai TH; Konneker A; Popa BI; Brady DJ; Cummer SA Proc Natl Acad Sci U S A; 2015 Aug; 112(34):10595-8. PubMed ID: 26261314 [TBL] [Abstract][Full Text] [Related]
17. Reflection and transmission of plane waves from a fluid-porous piezoelectric solid interface. Vashishth AK; Gupta V J Acoust Soc Am; 2011 Jun; 129(6):3690-701. PubMed ID: 21682394 [TBL] [Abstract][Full Text] [Related]
18. Graphene earphones: entertainment for both humans and animals. Tian H; Li C; Mohammad MA; Cui YL; Mi WT; Yang Y; Xie D; Ren TL ACS Nano; 2014 Jun; 8(6):5883-90. PubMed ID: 24766102 [TBL] [Abstract][Full Text] [Related]
19. Use of a porous material description of forests in infrasonic propagation algorithms. Swearingen ME; White MJ; Ketcham SA; McKenna MH J Acoust Soc Am; 2013 Oct; 134(4):2647-59. PubMed ID: 24116403 [TBL] [Abstract][Full Text] [Related]
20. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves. Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]