BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 23193023)

  • 1. Stable, hydroxyl functional polycarbonates with glycerol side chains synthesized from CO(2) and isopropylidene(glyceryl glycidyl ether).
    Geschwind J; Frey H
    Macromol Rapid Commun; 2013 Jan; 34(2):150-5. PubMed ID: 23193023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aliphatic polycarbonates based on carbon dioxide, furfuryl glycidyl ether, and glycidyl methyl ether: reversible functionalization and cross-linking.
    Hilf J; Scharfenberg M; Poon J; Moers C; Frey H
    Macromol Rapid Commun; 2015 Jan; 36(2):174-9. PubMed ID: 25407342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propargyl-functional aliphatic polycarbonate obtained from carbon dioxide and glycidyl propargyl ether.
    Hilf J; Frey H
    Macromol Rapid Commun; 2013 Sep; 34(17):1395-400. PubMed ID: 23893471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of atactic and isotactic poly(1,2-glycerol carbonate)s: degradable polymers for biomedical and pharmaceutical applications.
    Zhang H; Grinstaff MW
    J Am Chem Soc; 2013 May; 135(18):6806-9. PubMed ID: 23611027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystalline CO
    Kunze L; Wolfs J; Verkoyen P; Frey H
    Macromol Rapid Commun; 2018 Dec; 39(24):e1800558. PubMed ID: 30318666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled synthesis of multi-arm star polyether-polycarbonate polyols based on propylene oxide and CO2.
    Hilf J; Schulze P; Seiwert J; Frey H
    Macromol Rapid Commun; 2014 Jan; 35(2):198-203. PubMed ID: 24214125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Star-Shaped Poly(furfuryl glycidyl ether)-Block-Poly(glyceryl glycerol ether) as an Efficient Agent for the Enhancement of Nifuratel Solubility and for the Formation of Injectable and Self-Healable Hydrogel Platforms for the Gynaecological Therapies.
    Ziemczonek P; Gosecka M; Gosecki M; Marcinkowska M; Janaszewska A; Klajnert-Maculewicz B
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hetero-Multifunctional Poly(ethylene glycol) Copolymers with Multiple Hydroxyl Groups and a Single Terminal Functionality.
    Mangold C; Wurm F; Obermeier B; Frey H
    Macromol Rapid Commun; 2010 Feb; 31(3):258-64. PubMed ID: 21590899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates.
    Tsai FT; Wang Y; Darensbourg DJ
    J Am Chem Soc; 2016 Apr; 138(13):4626-33. PubMed ID: 26974858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chemical substituents on the structure of glassy diphenyl polycarbonates.
    Sulatha MS; Natarajan U
    J Phys Chem B; 2011 Feb; 115(7):1579-89. PubMed ID: 21275412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ugi reactions with CO2 : access to functionalized polyurethanes, polycarbonates, polyamides, and polyhydantoins.
    Sehlinger A; Schneider R; Meier MA
    Macromol Rapid Commun; 2014 Nov; 35(21):1866-71. PubMed ID: 25234822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionalized polycarbonate derived from tartaric acid: enzymatic ring-opening polymerization of a seven-membered cyclic carbonate.
    Wu R; Al-Azemi TF; Bisht KS
    Biomacromolecules; 2008 Oct; 9(10):2921-8. PubMed ID: 18771312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospun aliphatic polycarbonates as tailored tissue scaffold materials.
    Welle A; Kröger M; Döring M; Niederer K; Pindel E; Chronakis IS
    Biomaterials; 2007 Apr; 28(13):2211-9. PubMed ID: 17275083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room temperature organocatalyzed reductive depolymerization of waste polyethers, polyesters, and polycarbonates.
    Feghali E; Cantat T
    ChemSusChem; 2015 Mar; 8(6):980-4. PubMed ID: 25706036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From an epoxide monomer toolkit to functional PEG copolymers with adjustable LCST behavior.
    Mangold C; Obermeier B; Wurm F; Frey H
    Macromol Rapid Commun; 2011 Dec; 32(23):1930-4. PubMed ID: 21971715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal salen derivatives as catalysts for the alternating copolymerization of oxetanes and carbon dioxide to afford polycarbonates.
    Darensbourg DJ; Ganguly P; Choi W
    Inorg Chem; 2006 May; 45(10):3831-3. PubMed ID: 16676934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization.
    Yang J; Hao Q; Liu X; Ba C; Cao A
    Biomacromolecules; 2004; 5(1):209-18. PubMed ID: 14715028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copolymerization of Epichlorohydrin and CO2 Using Zinc Glutarate: An Additional Application of ZnGA in Polycarbonate Synthesis.
    Sudakar P; Sivanesan D; Yoon S
    Macromol Rapid Commun; 2016 May; 37(9):788-93. PubMed ID: 26991465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates.
    Brannigan RP; Dove AP
    Biomater Sci; 2016 Dec; 5(1):9-21. PubMed ID: 27840864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New iron pyridylamino-bis(phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonates.
    Taherimehr M; Sertã JP; Kleij AW; Whiteoak CJ; Pescarmona PP
    ChemSusChem; 2015 Mar; 8(6):1034-42. PubMed ID: 25688870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.