These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23193031)

  • 1. Rewiring translation for elongation factor Tu-dependent selenocysteine incorporation.
    Aldag C; Bröcker MJ; Hohn MJ; Prat L; Hammond G; Plummer A; Söll D
    Angew Chem Int Ed Engl; 2013 Jan; 52(5):1441-5. PubMed ID: 23193031
    [No Abstract]   [Full Text] [Related]  

  • 2. A sequence in the Escherichia coli fdhF "selenocysteine insertion Sequence" (SECIS) operates in the absence of selenium.
    Liu Z; Reches M; Engelberg-Kulka H
    J Mol Biol; 1999 Dec; 294(5):1073-86. PubMed ID: 10600367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of the Escherichia coli fdhF mRNA hairpin promoting selenocysteine incorporation with the ribosome.
    Hüttenhofer A; Heider J; Böck A
    Nucleic Acids Res; 1996 Oct; 24(20):3903-10. PubMed ID: 8918790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein.
    Heider J; Baron C; Böck A
    EMBO J; 1992 Oct; 11(10):3759-66. PubMed ID: 1396569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium is mobilized in vivo from free selenocysteine and is incorporated specifically into formate dehydrogenase H and tRNA nucleosides.
    Lacourciere GM
    J Bacteriol; 2002 Apr; 184(7):1940-6. PubMed ID: 11889101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer.
    Khangulov SV; Gladyshev VN; Dismukes GC; Stadtman TC
    Biochemistry; 1998 Mar; 37(10):3518-28. PubMed ID: 9521673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Facile Method for Producing Selenocysteine-Containing Proteins.
    Mukai T; Sevostyanova A; Suzuki T; Fu X; Söll D
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7215-7219. PubMed ID: 29631320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutations permitting fdhF (formate dehydrogenase H) expression in a selD mutant of Salmonella typhimurium.
    Chénier I; Dubé F; Hallenbeck PC
    Curr Microbiol; 2000 Jul; 41(1):39-44. PubMed ID: 10919397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formate hydrogenlyase: A group 4 [NiFe]-hydrogenase in tandem with a formate dehydrogenase.
    Finney AJ; Sargent F
    Adv Microb Physiol; 2019; 74():465-486. PubMed ID: 31126535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bulged nucleotide in the Escherichia coli minimal selenocysteine insertion sequence participates in interaction with SelB: a genetic approach.
    Li C; Reches M; Engelberg-Kulka H
    J Bacteriol; 2000 Nov; 182(22):6302-7. PubMed ID: 11053373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster.
    Boyington JC; Gladyshev VN; Khangulov SV; Stadtman TC; Sun PD
    Science; 1997 Feb; 275(5304):1305-8. PubMed ID: 9036855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mimicry in protein synthesis?
    Moore PB
    Science; 1995 Dec; 270(5241):1453-4. PubMed ID: 7491488
    [No Abstract]   [Full Text] [Related]  

  • 13. Coordination of selenium to molybdenum in formate dehydrogenase H from Escherichia coli.
    Gladyshev VN; Khangulov SV; Axley MJ; Stadtman TC
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7708-11. PubMed ID: 8052647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial formate hydrogenlyase complex.
    McDowall JS; Murphy BJ; Haumann M; Palmer T; Armstrong FA; Sargent F
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):E3948-56. PubMed ID: 25157147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The selenocysteine incorporation machinery allows the dual use of sense codons: a new strategy for expanding the genetic code?
    Stafforst T
    Chembiochem; 2014 Feb; 15(3):356-8. PubMed ID: 24376077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli.
    Fu X; Söll D; Sevostyanova A
    RNA Biol; 2018; 15(4-5):461-470. PubMed ID: 29447106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Electrochemical study of proton translocation function of hydrogenase 3].
    Bagramian KA
    Biofizika; 2002; 47(5):847-51. PubMed ID: 12397955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the relative position of the UGA codon to the unique secondary structure in the fdhF mRNA on its decoding by selenocysteinyl tRNA in Escherichia coli.
    Chen GF; Fang L; Inouye M
    J Biol Chem; 1993 Nov; 268(31):23128-31. PubMed ID: 8226830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering the elongation factor Tu for efficient selenoprotein synthesis.
    Haruna K; Alkazemi MH; Liu Y; Söll D; Englert M
    Nucleic Acids Res; 2014 Sep; 42(15):9976-83. PubMed ID: 25064855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu.
    Agirrezabala X; Frank J
    Q Rev Biophys; 2009 Aug; 42(3):159-200. PubMed ID: 20025795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.