These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23193031)

  • 21. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu.
    Agirrezabala X; Frank J
    Q Rev Biophys; 2009 Aug; 42(3):159-200. PubMed ID: 20025795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Involvement of formate dehydrogenases in stationary phase oxidative stress tolerance in Escherichia coli.
    Iwadate Y; Funabasama N; Kato JI
    FEMS Microbiol Lett; 2017 Nov; 364(20):. PubMed ID: 29044403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A synthetic tRNA for EF-Tu mediated selenocysteine incorporation in vivo and in vitro.
    Miller C; Bröcker MJ; Prat L; Ip K; Chirathivat N; Feiock A; Veszprémi M; Söll D
    FEBS Lett; 2015 Aug; 589(17):2194-9. PubMed ID: 26160755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Expression of Glutathione Peroxidase with Chimeric tRNA in Amber-less Escherichia coli.
    Fan Z; Song J; Guan T; Lv X; Wei J
    ACS Synth Biol; 2018 Jan; 7(1):249-257. PubMed ID: 28866886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dynamic competition between release factor 2 and the tRNA(Sec) decoding UGA at the recoding site of Escherichia coli formate dehydrogenase H.
    Mansell JB; Guévremont D; Poole ES; Tate WP
    EMBO J; 2001 Dec; 20(24):7284-93. PubMed ID: 11743004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissection and engineering of the Escherichia coli formate hydrogenlyase complex.
    McDowall JS; Hjersing MC; Palmer T; Sargent F
    FEBS Lett; 2015 Oct; 589(20 Pt B):3141-7. PubMed ID: 26358294
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure of mRNA hairpins promoting selenocysteine incorporation in Escherichia coli and their base-specific interaction with special elongation factor SELB.
    Hüttenhofer A; Westhof E; Böck A
    RNA; 1996 Apr; 2(4):354-66. PubMed ID: 8634916
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Outwitting EF-Tu and the ribosome: translation with d-amino acids.
    Achenbach J; Jahnz M; Bethge L; Paal K; Jung M; Schuster M; Albrecht R; Jarosch F; Nierhaus KH; Klussmann S
    Nucleic Acids Res; 2015 Jul; 43(12):5687-98. PubMed ID: 26026160
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular biology. A renewed focus on transfer RNA.
    Daviter T; Murphy FV; Ramakrishnan V
    Science; 2005 May; 308(5725):1123-4. PubMed ID: 15905389
    [No Abstract]   [Full Text] [Related]  

  • 30. Sulphur shuttling across a chaperone during molybdenum cofactor maturation.
    Arnoux P; Ruppelt C; Oudouhou F; Lavergne J; Siponen MI; Toci R; Mendel RR; Bittner F; Pignol D; Magalon A; Walburger A
    Nat Commun; 2015 Feb; 6():6148. PubMed ID: 25649206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Overproduction of a selenocysteine-containing polypeptide in Escherichia coli: the fdhF gene product.
    Chen GT; Axley MJ; Hacia J; Inouye M
    Mol Microbiol; 1992 Mar; 6(6):781-5. PubMed ID: 1533438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene-product relationships of fhlA and fdv genes of Escherichia coli.
    Sankar P; Lee JH; Shanmugam KT
    J Bacteriol; 1988 Dec; 170(12):5440-5. PubMed ID: 3056900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The N-terminal domains of the paralogous HycE and NuoCD govern assembly of the respective formate hydrogenlyase and NADH dehydrogenase complexes.
    Skorupa P; Lindenstrauß U; Burschel S; Blumenscheit C; Friedrich T; Pinske C
    FEBS Open Bio; 2020 Mar; 10(3):371-385. PubMed ID: 31925988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA.
    Baron C; Heider J; Böck A
    Proc Natl Acad Sci U S A; 1993 May; 90(9):4181-5. PubMed ID: 8483932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the hydA locus of Escherichia coli: two genes (hydN and hypF) involved in formate and hydrogen metabolism.
    Maier T; Binder U; Böck A
    Arch Microbiol; 1996 May; 165(5):333-41. PubMed ID: 8661925
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Another worm in translation.
    Kjeldgaard M
    Structure; 2002 Sep; 10(9):1154-5. PubMed ID: 12220486
    [No Abstract]   [Full Text] [Related]  

  • 37. A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system.
    Andrews SC; Berks BC; McClay J; Ambler A; Quail MA; Golby P; Guest JR
    Microbiology (Reading); 1997 Nov; 143 ( Pt 11)():3633-3647. PubMed ID: 9387241
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EPR characterization of the molybdenum(V) forms of formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774 upon formate reduction.
    Rivas MG; González PJ; Brondino CD; Moura JJ; Moura I
    J Inorg Biochem; 2007 Nov; 101(11-12):1617-22. PubMed ID: 17574676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component.
    Axley MJ; Grahame DA; Stadtman TC
    J Biol Chem; 1990 Oct; 265(30):18213-8. PubMed ID: 2211698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Problems with the transorientation hypothesis.
    Stagg SM; Valle M; Agrawal RK; Frank J; Harvey SC
    RNA; 2002 Sep; 8(9):1093-4. PubMed ID: 12358427
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.