These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 23193075)

  • 1. A structured framework for assessing sensitivity to missing data assumptions in longitudinal clinical trials.
    Mallinckrodt CH; Lin Q; Molenberghs M
    Pharm Stat; 2013; 12(1):1-6. PubMed ID: 23193075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structured approach to choosing estimands and estimators in longitudinal clinical trials.
    Mallinckrodt CH; Lin Q; Lipkovich I; Molenberghs G
    Pharm Stat; 2012; 11(6):456-61. PubMed ID: 22962024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A local influence sensitivity analysis for incomplete longitudinal depression data.
    Shen S; Beunckens C; Mallinckrodt C; Molenberghs G
    J Biopharm Stat; 2006 May; 16(3):365-84. PubMed ID: 16724491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing incomplete longitudinal clinical trial data.
    Molenberghs G; Thijs H; Jansen I; Beunckens C; Kenward MG; Mallinckrodt C; Carroll RJ
    Biostatistics; 2004 Jul; 5(3):445-64. PubMed ID: 15208205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Handling of missing data in long-term clinical trials: a case study.
    Janssens M; Molenberghs G; Kerstens R
    Pharm Stat; 2012; 11(6):442-8. PubMed ID: 22888095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates.
    Salim A; Mackinnon A; Christensen H; Griffiths K
    Psychiatry Res; 2008 Sep; 160(3):335-45. PubMed ID: 18718673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of imputation and modelling methods in the analysis of a physical activity trial with missing outcomes.
    Wood AM; White IR; Hillsdon M; Carpenter J
    Int J Epidemiol; 2005 Feb; 34(1):89-99. PubMed ID: 15333619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of longitudinal trials with protocol deviation: a framework for relevant, accessible assumptions, and inference via multiple imputation.
    Carpenter JR; Roger JH; Kenward MG
    J Biopharm Stat; 2013; 23(6):1352-71. PubMed ID: 24138436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intent-to-treat analysis for longitudinal studies with drop-outs.
    Little R; Yau L
    Biometrics; 1996 Dec; 52(4):1324-33. PubMed ID: 8962456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiple-imputation-based approach to sensitivity analyses and effectiveness assessments in longitudinal clinical trials.
    Ayele BT; Lipkovich I; Molenberghs G; Mallinckrodt CH
    J Biopharm Stat; 2014; 24(2):211-28. PubMed ID: 24605966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analytic method for the placebo-based pattern-mixture model.
    Lu K
    Stat Med; 2014 Mar; 33(7):1134-45. PubMed ID: 24122822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of overall treatment effect in MMRM.
    Song T; Dong Q; Sankoh AJ; Molenberghs G
    J Biopharm Stat; 2013; 23(6):1281-93. PubMed ID: 24138432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing missing data assumptions in longitudinal studies: an example using a smoking cessation trial.
    Yang X; Shoptaw S
    Drug Alcohol Depend; 2005 Mar; 77(3):213-25. PubMed ID: 15734221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the effect of multiple imputation on incomplete longitudinal data with application to a randomized clinical study.
    Fong DY; Rai SN; Lam KS
    J Biopharm Stat; 2013; 23(5):1004-22. PubMed ID: 23957512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of type I error rate associated with dose-group switching in a longitudinal Alzheimer trial.
    Habteab Ghebretinsae A; Molenberghs G; Dmitrienko A; Offen W; Sethuraman G
    J Biopharm Stat; 2014; 24(3):660-84. PubMed ID: 24697817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An alternative way to classify missing data mechanism in clinical trials--a dialogue on missing data.
    Wei L
    J Biopharm Stat; 2011 Mar; 21(2):355-61. PubMed ID: 21391007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A latent-class mixture model for incomplete longitudinal Gaussian data.
    Beunckens C; Molenberghs G; Verbeke G; Mallinckrodt C
    Biometrics; 2008 Mar; 64(1):96-105. PubMed ID: 17608789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accounting for dropout bias using mixed-effects models.
    Mallinckrodt CH; Clark WS; David SR
    J Biopharm Stat; 2001; 11(1-2):9-21. PubMed ID: 11459446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity analysis of intention-to-treat estimates when withdrawals are related to unobserved compliance status.
    Salim A; Mackinnon A; Griffiths K
    Stat Med; 2008 Apr; 27(8):1164-79. PubMed ID: 17724782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment effects in randomized longitudinal trials with different types of nonignorable dropout.
    Yang M; Maxwell SE
    Psychol Methods; 2014 Jun; 19(2):188-210. PubMed ID: 24079928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.