These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 23193087)

  • 21. Differences in resistance to nitrogen and phosphorus deficiencies explain male-biased populations of poplar in nutrient-deficient habitats.
    Song H; Lei Y; Zhang S
    J Proteomics; 2018 Apr; 178():123-127. PubMed ID: 29175092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China.
    Shen J; Li C; Mi G; Li L; Yuan L; Jiang R; Zhang F
    J Exp Bot; 2013 Mar; 64(5):1181-92. PubMed ID: 23255279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidation of salt stress defense and tolerance mechanisms of crop plants using proteomics--current achievements and perspectives.
    Barkla BJ; Castellanos-Cervantes T; de León JL; Matros A; Mock HP; Perez-Alfocea F; Salekdeh GH; Witzel K; Zörb C
    Proteomics; 2013 Jun; 13(12-13):1885-900. PubMed ID: 23723162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proteomic Analysis Dissects Molecular Mechanisms Underlying Plant Responses to Phosphorus Deficiency.
    Zhou M; Zhu S; Mo X; Guo Q; Li Y; Tian J; Liang C
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.
    Kant S; Bi YM; Rothstein SJ
    J Exp Bot; 2011 Feb; 62(4):1499-509. PubMed ID: 20926552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants.
    Courbet G; Gallardo K; Vigani G; Brunel-Muguet S; Trouverie J; Salon C; Ourry A
    J Exp Bot; 2019 Aug; 70(16):4183-4196. PubMed ID: 31055598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles and functions of plant mineral nutrients.
    Maathuis FJ; Diatloff E
    Methods Mol Biol; 2013; 953():1-21. PubMed ID: 23073873
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissection of Crop Metabolome Responses to Nitrogen, Phosphorus, Potassium, and Other Nutrient Deficiencies.
    Xue Y; Zhu S; Schultze-Kraft R; Liu G; Chen Z
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops.
    Welch RM; Graham RD
    J Trace Elem Med Biol; 2005; 18(4):299-307. PubMed ID: 16028491
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomics-based investigation of salt-responsive mechanisms in plant roots.
    Zhao Q; Zhang H; Wang T; Chen S; Dai S
    J Proteomics; 2013 Apr; 82():230-53. PubMed ID: 23385356
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rice proteomics: ending phase I and the beginning of phase II.
    Agrawal GK; Jwa NS; Rakwal R
    Proteomics; 2009 Feb; 9(4):935-63. PubMed ID: 19212951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plant Responses to Nanoparticle Stress.
    Hossain Z; Mustafa G; Komatsu S
    Int J Mol Sci; 2015 Nov; 16(11):26644-53. PubMed ID: 26561803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.
    Owiti J; Grossmann J; Gehrig P; Dessimoz C; Laloi C; Hansen MB; Gruissem W; Vanderschuren H
    Plant J; 2011 Jul; 67(1):145-56. PubMed ID: 21435052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.
    Tada Y; Kashimura T
    Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The node, a hub for mineral nutrient distribution in graminaceous plants.
    Yamaji N; Ma JF
    Trends Plant Sci; 2014 Sep; 19(9):556-63. PubMed ID: 24953837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomic and phosphoproteomic analysis of Picea wilsonii pollen development under nutrient limitation.
    Chen Y; Liu P; Hoehenwarter W; Lin J
    J Proteome Res; 2012 Aug; 11(8):4180-90. PubMed ID: 22709367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotechnology of nutrient uptake and assimilation in plants.
    López-Arredondo DL; Leyva-González MA; Alatorre-Cobos F; Herrera-Estrella L
    Int J Dev Biol; 2013; 57(6-8):595-610. PubMed ID: 24166442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant nutriomics in China: an overview.
    Yan X; Wu P; Ling H; Xu G; Xu F; Zhang Q
    Ann Bot; 2006 Sep; 98(3):473-82. PubMed ID: 16735410
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement.
    Vanderschuren H; Lentz E; Zainuddin I; Gruissem W
    J Proteomics; 2013 Nov; 93():5-19. PubMed ID: 23748024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant mineral transport systems and the potential for crop improvement.
    Yadav B; Jogawat A; Lal SK; Lakra N; Mehta S; Shabek N; Narayan OP
    Planta; 2021 Jan; 253(2):45. PubMed ID: 33483879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.