These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23193087)

  • 41. Nutrient biofortification of food crops.
    Hirschi KD
    Annu Rev Nutr; 2009; 29():401-21. PubMed ID: 19400753
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation.
    Postma JA; Schurr U; Fiorani F
    Biotechnol Adv; 2014; 32(1):53-65. PubMed ID: 24012600
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing plant phosphorus use efficiency for sustainable cropping.
    Shenoy VV; Kalagudi GM
    Biotechnol Adv; 2005 Nov; 23(7-8):501-13. PubMed ID: 16140488
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nitrogen Deficiency Induced Alterations in the Root Proteome of a Pair of Potato (Solanum tuberosum L.) Varieties Contrasting for their Response to Low N.
    Jozefowicz AM; Hartmann A; Matros A; Schum A; Mock HP
    Proteomics; 2017 Dec; 17(23-24):. PubMed ID: 29087609
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Systems biology-based approaches toward understanding drought tolerance in food crops.
    Jogaiah S; Govind SR; Tran LS
    Crit Rev Biotechnol; 2013 Mar; 33(1):23-39. PubMed ID: 22364373
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Responses to mineral nutrient availability and heterogeneity in physiologically integrated sedges from contrasting habitats.
    D'Hertefeldt T; Falkengren-Grerup U; Jónsdóttir IS
    Plant Biol (Stuttg); 2011 May; 13(3):483-92. PubMed ID: 21489099
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Responses of barley root and shoot proteomes to long-term nitrogen deficiency, short-term nitrogen starvation and ammonium.
    Møller AL; Pedas P; Andersen B; Svensson B; Schjoerring JK; Finnie C
    Plant Cell Environ; 2011 Dec; 34(12):2024-37. PubMed ID: 21736591
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms.
    Ohkama-Ohtsu N; Wasaki J
    Plant Cell Physiol; 2010 Aug; 51(8):1255-64. PubMed ID: 20624893
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plasma membrane H
    Zeng H; Chen H; Zhang M; Ding M; Xu F; Yan F; Kinoshita T; Zhu Y
    Trends Plant Sci; 2024 Sep; 29(9):978-994. PubMed ID: 38582687
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteomic analysis for low and high nitrogen-responsive proteins in the leaves of rice genotypes grown at three nitrogen levels.
    Hakeem KR; Chandna R; Ahmad A; Qureshi MI; Iqbal M
    Appl Biochem Biotechnol; 2012 Oct; 168(4):834-50. PubMed ID: 22903322
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Legume proteomics: Progress, prospects, and challenges.
    Rathi D; Gayen D; Gayali S; Chakraborty S; Chakraborty N
    Proteomics; 2016 Jan; 16(2):310-27. PubMed ID: 26563903
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mg deficiency affects leaf Mg remobilization and the proteome in Brassica napus.
    Billard V; Maillard A; Coquet L; Jouenne T; Cruz F; Garcia-Mina JM; Yvin JC; Ourry A; Etienne P
    Plant Physiol Biochem; 2016 Oct; 107():337-343. PubMed ID: 27362297
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plant proteomic research for improvement of food crops under stresses: a review.
    Mustafa G; Komatsu S
    Mol Omics; 2021 Dec; 17(6):860-880. PubMed ID: 34870299
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proteomic dissection of plant responses to various pathogens.
    Fang X; Chen J; Dai L; Ma H; Zhang H; Yang J; Wang F; Yan C
    Proteomics; 2015 May; 15(9):1525-43. PubMed ID: 25641875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plant concepts for mineral acquisition and allocation.
    Hell R; Hillebrand H
    Curr Opin Biotechnol; 2001 Apr; 12(2):161-8. PubMed ID: 11287231
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses.
    Zhao Q; Suo J; Chen S; Jin Y; Ma X; Yin Z; Zhang Y; Wang T; Luo J; Jin W; Zhang X; Zhou Z; Dai S
    Sci Rep; 2016 Sep; 6():32717. PubMed ID: 27596441
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving phosphorus use efficiency: a complex trait with emerging opportunities.
    Heuer S; Gaxiola R; Schilling R; Herrera-Estrella L; López-Arredondo D; Wissuwa M; Delhaize E; Rouached H
    Plant J; 2017 Jun; 90(5):868-885. PubMed ID: 27859875
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Toward a definition of the complete proteome of plant peroxisomes: Where experimental proteomics must be complemented by bioinformatics.
    Reumann S
    Proteomics; 2011 May; 11(9):1764-79. PubMed ID: 21472859
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent Developments on Nanotechnology in Agriculture: Plant Mineral Nutrition, Health, and Interactions with Soil Microflora.
    Achari GA; Kowshik M
    J Agric Food Chem; 2018 Aug; 66(33):8647-8661. PubMed ID: 30036480
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proteomics in commercial crops: An overview.
    Tan BC; Lim YS; Lau SE
    J Proteomics; 2017 Oct; 169():176-188. PubMed ID: 28546092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.