These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 23193294)
1. CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Ziebarth JD; Bhattacharya A; Cui Y Nucleic Acids Res; 2013 Jan; 41(Database issue):D188-94. PubMed ID: 23193294 [TBL] [Abstract][Full Text] [Related]
2. CTCFBSDB: a CTCF-binding site database for characterization of vertebrate genomic insulators. Bao L; Zhou M; Cui Y Nucleic Acids Res; 2008 Jan; 36(Database issue):D83-7. PubMed ID: 17981843 [TBL] [Abstract][Full Text] [Related]
3. Comparative Hi-C reveals that CTCF underlies evolution of chromosomal domain architecture. Vietri Rudan M; Barrington C; Henderson S; Ernst C; Odom DT; Tanay A; Hadjur S Cell Rep; 2015 Mar; 10(8):1297-309. PubMed ID: 25732821 [TBL] [Abstract][Full Text] [Related]
4. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Cuddapah S; Jothi R; Schones DE; Roh TY; Cui K; Zhao K Genome Res; 2009 Jan; 19(1):24-32. PubMed ID: 19056695 [TBL] [Abstract][Full Text] [Related]
5. CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function. Washington SD; Musarrat F; Ertel MK; Backes GL; Neumann DM J Virol; 2018 Apr; 92(8):. PubMed ID: 29437965 [TBL] [Abstract][Full Text] [Related]
6. Defining the multivalent functions of CTCF from chromatin state and three-dimensional chromatin interactions. Lu Y; Shan G; Xue J; Chen C; Zhang C Nucleic Acids Res; 2016 Jul; 44(13):6200-12. PubMed ID: 27067545 [TBL] [Abstract][Full Text] [Related]
7. Comprehensive identification and annotation of cell type-specific and ubiquitous CTCF-binding sites in the human genome. Chen H; Tian Y; Shu W; Bo X; Wang S PLoS One; 2012; 7(7):e41374. PubMed ID: 22829947 [TBL] [Abstract][Full Text] [Related]
8. The murine IgH locus contains a distinct DNA sequence motif for the chromatin regulatory factor CTCF. Ciccone DN; Namiki Y; Chen C; Morshead KB; Wood AL; Johnston CM; Morris JW; Wang Y; Sadreyev R; Corcoran AE; Matthews AGW; Oettinger MA J Biol Chem; 2019 Sep; 294(37):13580-13592. PubMed ID: 31285261 [TBL] [Abstract][Full Text] [Related]
9. Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes. Li Y; Huang W; Niu L; Umbach DM; Covo S; Li L BMC Genomics; 2013 Aug; 14():553. PubMed ID: 23945083 [TBL] [Abstract][Full Text] [Related]
10. [ZNF143 is involved in CTCF-mediated chromatin interactions by cooperation with cohesin and other partners]. Ye BY; Shen WL; Wang D; Li P; Zhang Z; Shi ML; Zhang Y; Zhang FX; Zhao ZH Mol Biol (Mosk); 2016; 50(3):496-503. PubMed ID: 27414788 [TBL] [Abstract][Full Text] [Related]
11. B cell differentiation is associated with reprogramming the CCCTC binding factor-dependent chromatin architecture of the murine MHC class II locus. Majumder P; Scharer CD; Choi NM; Boss JM J Immunol; 2014 Apr; 192(8):3925-35. PubMed ID: 24634495 [TBL] [Abstract][Full Text] [Related]
13. Research progress of CTCF in mediating 3D genome formation and regulating gene expression. Zhou C; Zhou QW; Cheng S; Li GL Yi Chuan; 2021 Sep; 43(9):816-821. PubMed ID: 34702695 [TBL] [Abstract][Full Text] [Related]
14. A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities. Amelio AL; McAnany PK; Bloom DC J Virol; 2006 Mar; 80(5):2358-68. PubMed ID: 16474142 [TBL] [Abstract][Full Text] [Related]
15. A genome-wide map of CTCF multivalency redefines the CTCF code. Nakahashi H; Kieffer Kwon KR; Resch W; Vian L; Dose M; Stavreva D; Hakim O; Pruett N; Nelson S; Yamane A; Qian J; Dubois W; Welsh S; Phair RD; Pugh BF; Lobanenkov V; Hager GL; Casellas R Cell Rep; 2013 May; 3(5):1678-1689. PubMed ID: 23707059 [TBL] [Abstract][Full Text] [Related]
16. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Sanborn AL; Rao SS; Huang SC; Durand NC; Huntley MH; Jewett AI; Bochkov ID; Chinnappan D; Cutkosky A; Li J; Geeting KP; Gnirke A; Melnikov A; McKenna D; Stamenova EK; Lander ES; Aiden EL Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6456-65. PubMed ID: 26499245 [TBL] [Abstract][Full Text] [Related]
17. CCCTC-binding factor: to loop or to bridge. Zlatanova J; Caiafa P Cell Mol Life Sci; 2009 May; 66(10):1647-60. PubMed ID: 19137260 [TBL] [Abstract][Full Text] [Related]
18. CTCF Binding Polarity Determines Chromatin Looping. de Wit E; Vos ES; Holwerda SJ; Valdes-Quezada C; Verstegen MJ; Teunissen H; Splinter E; Wijchers PJ; Krijger PH; de Laat W Mol Cell; 2015 Nov; 60(4):676-84. PubMed ID: 26527277 [TBL] [Abstract][Full Text] [Related]
19. An insulator embedded in the chicken α-globin locus regulates chromatin domain configuration and differential gene expression. Furlan-Magaril M; Rebollar E; Guerrero G; Fernández A; Moltó E; González-Buendía E; Cantero M; Montoliu L; Recillas-Targa F Nucleic Acids Res; 2011 Jan; 39(1):89-103. PubMed ID: 20813760 [TBL] [Abstract][Full Text] [Related]
20. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains. Van Bortle K; Ramos E; Takenaka N; Yang J; Wahi JE; Corces VG Genome Res; 2012 Nov; 22(11):2176-87. PubMed ID: 22722341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]